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Mining operations in Africa are expanding rapidly, creating negative ex-

ternalities that remain poorly understood. In this paper, we provide

causal evidence for the impact of water pollution from mines on vegeta-

tion and agriculture across the continent. We exploit a natural experi-

ment, where mines cause a discontinuity in water pollution along river

networks, comparing vegetation health in upstream and downstream lo-

cations. We find that mines significantly reduce peak vegetation indices

downstream by 1.3–1.5%, and impair the productivity of over 74,000

km2 of croplands. Impacts may reach farther downstream, and are par-

ticularly strong in fertile regions and areas where gold mining predom-

inates. Our findings highlight substantial externalities of mining and

an urgent need for enhanced regulation and oversight to mitigate and

monitor them.
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1. Introduction

The mining sector in Africa is experiencing an unprecedented boom, driven by re-

quirements of the transition to cleaner energy [Pörtner et al., 2022]. While this can

bring economic opportunities, mining also creates many negative externalities. It

has been linked to pollution, environmental change, and biodiversity loss, as well as

corruption, conflict, and child labor that undermine livelihoods.1 These external-

ities are striking and may have far-reaching impacts that could offset the benefits

of minerals. However, reliable and generalizable insights into these impacts remain

scarce — particularly in a development context where fledgling institutions struggle

to internalize the costs of mining, and negative impacts often go unmitigated.

In this paper, we provide causal evidence for the impacts of water pollution from

mines on vegetation and agriculture in Africa. We exploit a natural experiment for

identification, where mine locations see a discontinuous jump in water pollution that

follows river networks. Mines cause a sharp drop in vegetation health downstream,

for which regions upstream can serve as a control group. To implement this research

design, we use fine-grained river basins as our unit of analysis. We overcome data

limitations by using satellite-derived peak vegetation indices with appropriate land

use masks to measure vegetation health and agricultural productivity across the

continent. By combining this information with a comprehensive dataset of mining

sites, we can estimate the causal effects of water pollution from mines across Africa

with unprecedented scope.

Our research design identifies impacts of mines on vegetation that are mediated

by water.2 The primary mechanism is water pollution; mines are known to cause

acidification, elevated salinity, and heavy metal contamination. These pollutants

affect vegetation and agricultural productivity by disrupting plant physiology, soil

microbiomes, and nutrient uptake. Secondary mechanisms include adaptation be-

1See, for instance, Aska et al. [2024], Berman et al. [2017, 2023], Giljum et al. [2022], Girard et al.
[2024], Knutsen et al., Macklin et al. [2023], Santana et al. [2020]

2Our design has several notable parallels in the literature. Most closely related, Gittard and Hu
[2024] investigate the impact of industrial mining on health outcomes in Africa, with impacts
transmitted via water pollution. Sigman [2002] finds increased water pollution upstream of
international borders, providing evidence of free-riding at a national level, while Lipscomb and
Mobarak [2017] show that this problem also exists within countries. Dias et al. [2023] exploit the
discontinuity to identify the impacts of glyphosate use in the cultivation of soybean in Brazil
on birth outcomes, and Strobl and Strobl [2011] assess the impact of dams on agricultural
productivity in Africa.
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haviors — farmers switching crops or relocating in response to water pollution. The

many other effects of mining, such as air pollution or economic effects, that are not

directed along river flows are netted out by our research design.

The main contribution of our paper is the robust causal estimation of mining im-

pacts on vegetation health that are mediated by water pollution — one important

and previously neglected externality of mining. While hydrological studies suggest

that vast areas and millions of livelihoods are affected by river pollution from mining

[Macklin et al., 2023], causal evidence remains scarce and limited in scope. Previous

research has investigated various other impacts of mining,3 and many studies doc-

ument pollution from mine sites.4 The link between mining, water pollution, and

vegetation health, however, remains underexplored at larger scales. Our study closes

this gap by contributing strong causal evidence for negative effects across diverse

mining operations throughout Africa.

Our study also speaks to several related strands of the literature. We add to earlier

research on water pollution in a development context, typically focused on drinking

water [e.g. Olmstead, 2010], by highlighting that water quality serves as a broad

ecosystem service — not only an end in itself but also a means to other services

[Keeler et al., 2012]. Our work complements research on looming water scarcity

that acknowledges pollution concerns [e.g. Van Vliet et al., 2017, Jones et al., 2023],

as well as recent studies that use remote-sensing methods to assess the impacts of

mining [e.g. Giljum et al., 2022] in a data-scarce environment [see Maus and Werner,

2024]. To the extent that higher-income countries drive the demand for minerals

and outsource polluting industries to lower-income countries, our results can be seen

in the context of global environmental justice [see, e.g., Banzhaf et al., 2019].

We find that mines have considerable negative effects on vegetation downstream.

Overall, peak vegetation is reduced by approximately 1.3 percent at the mean; for

croplands specifically, peak vegetation is reduced by about 1.4 percent at the mean.

These effects are economically meaningful — the immediately impacted area (up

to around 33 km downstream) alone stretches over 280,000 km2, of which 74,000

are croplands — corresponding to the total cropland area of Ghana. Conservative

estimates place the resulting loss of cereal crops at 91,000 tons annually, although

suggestive evidence indicates that effects persist much further downstream. We

3Aragón and Rud [2015], Aska et al. [2024], Berman et al. [2017], Gittard and Hu [2024], Ofosu
et al. [2020], von der Goltz and Barnwal [2019]

4Awotwi et al. [2021], Du et al. [2024], Duncan [2020], Mulenga et al. [2024], Wu et al. [2023]
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additionally investigate impact heterogeneities to identify important mechanisms,

and find the largest negative effects in fertile regions and ones where gold mining

predominates.

Our findings have important practical implications — agriculture plays a vital role

in local livelihoods and economies, and large, fertile, populated areas are affected

by mines. Water pollution from mines can cause great economic and nutritional

disruptions, affecting the already severe and worsening food insecurity in Africa.

From a policy perspective, our study highlights the severe lack of accountability

mechanisms for the mining industry and the scarcity of data to assess their impacts.5

As a result, current research is limited in scope and imperfect proxies constrain the

types of effects that can be detected. Remote-sensing approaches can help bridge

this gap efficiently, but rely on conventional high-quality data for calibration.

The remainder of this paper is structured as follows. In the next section, we

provide background and intuition for the key components of our analysis. In Sec-

tion 3, we describe the specific data and empirical strategy that we use to implement

our research design. Section 4, presents the main results, potential heterogeneities,

and robustness checks for our findings. Finally, we discuss our results and their

implications in Section 5, and conclude in Section 6.

2. Background and Intuition

This section introduces key components of our study and explains the intuition

behind our research design. We examine how mining operations affect vegetation

and agriculture through water pollution, using river basins as natural experimental

units and satellite-derived indices to measure outcomes. This approach allows us to

isolate causal effects by comparing areas upstream and downstream of mines.

2.1. Mines and mining in Africa

Mining on the African continent has experienced considerable growth, largely driven

by the increasing global demand for minerals and metals [International Council on

Mining and Metals, 2022]. This expansion presents both opportunities and chal-

lenges for African economies. While mining can generate employment and stimulate

local economic development [Bazillier and Girard, 2020, Gräser, 2024, von der Goltz

5Also see Auld et al. [2018], Maus and Werner [2024], Jones et al. [2024]
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and Barnwal, 2019, Ofosu et al., 2020], it also brings substantial risks. Resource

wealth may crowd out other industries, drive corruption and conflict [Berman et al.,

2017, 2023, Knutsen et al.], and mining drives rapid environmental changes [Aska

et al., 2024, Barenblitt et al., 2021, Giljum et al., 2022, Girard et al., 2024] and cre-

ates pollution with considerable impacts on people and their environments [Awotwi

et al., 2021, Macklin et al., 2023].

Mines affect vegetation and agriculture through multiple channels, with water pol-

lution playing a particularly important role [Santana et al., 2020]. Mining disturbs

orders of magnitude more material than the metal eventually extracted, creating

erosion, and generating waste materials. These waste products include sediment,

rock, and (heavy) metals, and are stored as ‘tailings’, which are large deposits of

byproducts. Tailings and toxic chemicals used in processing are well-known eco-

logical risks [see, e.g., Wu et al., 2023, for a meta-analysis of sediment pollution in

China]. Sulfides cause acid mine drainage, leading to acidification that can persist

for hundreds of years, degrades water quality, and devastates aquatic ecosystems

[Du et al., 2024, Johnson and Hallberg, 2005]. Sodium cyanide and (in artisanal

mining) mercury are used for the extraction of gold [Duncan, 2020, Malone et al.,

2023, Verbrugge et al., 2021], reduce biodiversity, disrupt nutrient cycles, and cause

long-term alterations of sediment chemistry.

Water plays a central role in the environmental impacts of mining. Operations

require copious amounts of water for processing, which is often returned to the en-

vironment contaminated with chemicals, heavy metals, and sediment. Tailings are

oxidized by air and weathered by rain, which steadily causes pollution of water re-

sources as they feed into rivers [Schwarzenbach et al., 2010]. The resulting pollution

from heavy metals [Frossard et al., 2018], increased salinity [Russ et al., 2020, Zörb

et al., 2019], and acidification [Du et al., 2024] impact vegetation health via plant

physiology and growth, by disrupting nutrient uptake, and by impairing soil micro-

biomes. (See Appendix B1 for a literature overview on the effects of water pollution

and plant health].

Beyond water pollution, mines also affect vegetation through air pollution — par-

ticularly from coal mining and processing of metals in smelters [Fugiel et al., 2017,

Miao et al., 2017, Pandey et al., 2014]. For Ghana, Aragón and Rud [2015] find

that air pollution from gold mining in Ghana reduced total factor productivity in

the agricultural sector by 40%, mostly through direct effects on crop health by air
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and the resulting soil pollution. Socioeconomic factors constitute another pathway

through which mines affect agriculture and vegetation. Corruption, conflict, and

weak institutions have been linked to mining and are detrimental to agricultural pro-

ductivity [Wuepper et al., 2023]. Pollution also has negative impacts on labor supply

[Hanna and Oliva, 2015] and productivity [Graff Zivin and Neidell, 2012], human

capital accumulation [Currie et al., 2009], and mining industries affect local income

and employment [see, e.g., Bazillier and Girard, 2020, Gräser, 2024, Kotsadam and

Tolonen, 2016]. These impacts may, in turn, affect agricultural productivity.

These risks of mining are particularly acute in Africa, where mines often lack

effective oversight [Macklin et al., 2023]. The mining industry and its large indus-

trial mining sites have been slow to adopt global regulations,6 while the prevalent

small-scale, artisanal mines often operate outside regulatory frameworks entirely. As

a result, artisanal miners often employ particularly dangerous processing methods,

such as the use of mercury for gold mining [Barenblitt et al., 2021], and have little

incentive to manage tailings in sustainable ways.

The combination of expanding mining operations and weak institutional oversight

endangers both the environment and local populations. Countries that lack robust

institutional frameworks to monitor and regulate mining face severe challenges in

managing its detrimental externalities. This situation is especially concerning given

the heavy reliance on subsistence agriculture, looming food insecurity, and the po-

tential long-term consequences of environmental degradation [see, e.g., Audry et al.,

2004, Johnson and Hallberg, 2005].

2.2. River basins and water streams

River basins are an ideal unit of observation for studying water-mediated impacts

of mining due to their natural hydrological properties. A river basin is defined as

the area that is drained by a river and its tributaries. Following the prevailing

elevation and slope, all surface waters in the area converge to a single point.7 Basin

boundaries are defined by topological features such as ridges and hills, creating

6A recent exception is the 2020 Global Industry Standard on Tailings Management [GISTM;
UNEP, 2023], which was established to prevent future tailing dam failures after the catastrophic
dam collapse at Vale’s Corrego de Feijao mine in Brazil.

7Two prominent examples are the Mississippi River, which drains most of the mainland United
States into the Gulf of Mexico, and the Congo Basin, which covers most of the Democratic
Republic of the Congo (DRC) and drains into the Atlantic.
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naturally distinct hydrological units. This definition can be applied recursively,

ranging from continental to local scales and giving rise to a hierarchical system of

nested basins, in which larger basins are divided into smaller sub-basins that merge

at river confluences [Lehner and Grill, 2013].

The most important property of river basins for our analysis is the unidirectional

flow of surface water.8 Water flows downstream, following elevation gradients and

carrying pollutants with it. This creates a natural discontinuity at the mine site:

downstream basins may be affected by contaminated water, while upstream basins

remain unaffected and can serve as controls. A basin’s distance to the mine site

reflects the intensity of the treatment, as well as the degree to which treated and

control units are comparable.

We use fine-scale river basins, illustrated in the left panel of Figure 1, as our

units of observation. These basins have an average area of 124.4 km2, diameter of

12 km, and elevation differences of eleven meters, providing sufficient resolution to

detect localized impacts of mining. Their relatively small size ensures that relevant

factors vary smoothly between adjacent basins, suggesting that discontinuities in

vegetation and agricultural productivity can be attributed to mine sites themselves.

The boundaries of river basins are determined by natural topographic features, rel-

ative to which exact mine locations can reasonably be considered as random. While

rivers often serve as natural borders in political and administrative contexts, the

basin-level is rarely considered outside specialized hydrological studies.

2.3. Agricultural productivity from space

Measuring the impacts of mining on agricultural productivity in Africa presents sig-

nificant challenges that we address using remote sensing data. For our analysis, we

need a temporally and spatially consistent measure of agricultural production. Tra-

ditional methods like surveys or censuses face several challenges with consistency,

availability, and accuracy in the context of our study. The continent is characterized

by diverse climates, cropping systems, and agricultural practices. Smallholder farm-

ing plays an important role, agriculture is predominantly rainfed, and conventional

agricultural statistics are scarcely available.

8River basins correlate strongly with groundwater systems, but only capture the flow of surface
water.
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Figure 1: Example of two Angolan mine sites (dotted, and labeled with ‘0’) and their
upstream and downstream basin systems (left), and measurements of the Enhanced Vege-
tation Index (EVI) for croplands and general vegetation over the years 2016, 2017, 2018,
2019, 2020, 2021, 2022, and 2023 for the right basin system (right).
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To overcome these data limitations, we employ satellite-derived vegetation indices

as proxies for vegetation health and agricultural productivity. This provides us with

consistent measurements for the entire continent, with high granularity across time

and space. Specifically, we use the Enhanced Vegetation Index (EVI) to construct

a peak vegetation index, which correlates strongly with measures of gross primary

production of vegetation and agriculture [Shi et al., 2017, Johnson, 2016], and is

frequently used in similar analyses [see, e.g., Asher and Novosad, 2020, Agarwal

et al., 2024, Wuepper et al., 2023]. The EVI offers several advantages over alternative

vegetation indices [see Zeng et al., 2022, for a recent review] that make it suitable

for our application.9

To distinguish between agricultural areas, general vegetation, and other land use

types not relevant for our analysis, we apply vegetation and cropland land use masks

to the EVI. An example of both EVI measurements along a basin system is provided

in Figure 1, which demonstrates how the indices capture vegetation patterns up- and

downstream of a mining site. By combining these satellite-derived measures with our

basin-level approach, we can identify granular discontinuities in vegetation health

and agricultural productivity, while maintaining consistent measurement across the

diverse environmental and institutional conditions throughout Africa.

2.4. Research design

Our empirical strategy integrates these three components — mining sites, river

basins, and remotely sensed vegetation — to identify causal effects of mining activity

on agricultural productivity and vegetation health downstream across the African

continent. Figure 2 illustrates our approach.

First, we identify basins that contain mine sites. Mines impact their surrounding

environment in various ways and create a sharp discontinuity in vegetation patterns

at the basin boundaries. Second, we identify basins located up- and downstream of

the mine basin within the river network. Third, we isolate the river-mediated impact

that follows the directed flow of water along this network. We assess the vegetation

downstream and contrast it with vegetation upstream, allowing us to control for

9Compared to the commonly used Normalized Difference Vegetation Index (NDVI), the EVI re-
duces the influence of atmospheric distortions and background noise caused by canopy and soil
[Gao et al., 2000]. Moreover, the EVI does not suffer from the NDVI’s scaling problems, and
can accurately convey variation in low as well as high biomass conditions where the NDVI tends
to saturate [Huete et al., 2002].
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Upstream

Mine Site

Downstream

River impacts

Other impacts

Figure 2: Illustration of the research design. The comparison of up- and downstream
basins enables the identification of mine impacts that are mediated by the river.

general effects of mines (e.g., air pollution or economic effects) and identify the

causal effect that is mediated by water.

Our strategy relies on the key assumption that the observed discontinuity along

the river stems from the mine itself. This is plausible when mine sites are located

quasi-randomly, and not driven by factors related to vegetation or agricultural po-

tential. Mine locations are primarily determined by the location of accessible mineral

deposits. While potential confounders exist, e.g., due to strategic placement near

transportation infrastructure, these are unlikely to confound the effect of interest

for two reasons. First, their impacts would need to align with the direction of water

flow, and second, they would have to affect the mine location at the fine-scale basin

level.

The immediate vicinity of mine basins provides strong causal identification, but

estimating the reach and decay of impacts over greater distance presents additional

challenges. In areas close to mines, basin characteristics remain balanced due to

the granular level of observations. At greater distances, however, fundamental dif-

ferences may emerge due to broader geographical patterns, and minor differences

may begin to accumulate in impact. Other sources of water pollution, for example,

are slightly more likely to be located downstream, as many mines are located at

higher altitudes and river transport is economically attractive. While these factors

arguably do not affect the discontinuity on-site, they could confound our assessment

of impact decay.
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To address these challenges while providing suggestive evidence for the extent

of impacts, we divide our analysis in two parts. First, we focus on effects in the

immediate vicinity, which can be cleanly causally identified in a model-agnostic

fashion. Second, we impose a specific model on the impact of mines to investigate

the potential range and decay of impacts over greater distances while accounting

for potential confounders. This dual approach allows us to maintain rigorous causal

identification while also exploring broader spatial patterns of mining impacts.

Mediators and limitations Our research design only captures impacts of mining

on vegetation that are mediated by rivers, providing a focused but partial view of

mining’s total external effects. Direct impacts on-site, such as land clearing, and

impacts that are not directed along the river, such as dust deposition on plants or

employment effects, are not captured by our estimates. This limitation helps us

isolate a specific and possibly far-reaching impact channel — water pollution — but

means that our results represent a lower bound for the total impact of mining.

The effect of water pollution that we identify in our study may be mediated by sev-

eral factors that influence our interpretation of estimates. Most importantly, human

adaptation to impacts is reflected in our estimates. If farmers relocate in response

to pollution, this could amplify the measured impact. Conversely, other adaptations

such as changing crops or farming practices might attenuate impacts. Another im-

portant mediator is soil pollution, which particularly affects the prevalent rainfed

agriculture in Africa. As water pollutants settle in the soil and groundwater, they

can impact plant growth in areas that are not directly irrigated from the polluted

river. This means our estimates likely capture both direct water effects on irrigated

agriculture and indirect soil-mediated effects on rainfed farming.

These mediating factors help contextualize our findings and suggest directions

for future research. Studies of effective adaptation behavior, in particular, may

be helpful to mitigate negative impacts. While our approach cannot disentangle

these mechanisms, it provides robust causal evidence for the overall impact of min-

ing on downstream vegetation and agricultural productivity — one important and

neglected instance of the many externalities of mining.
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3. Materials and Methods

This section describes the dataset and methods used. First, we describe the basin-level

dataset and how it is constructed, and elaborate on individual variables included.

Then, we present our empirical strategy.

3.1. Dataset

Our dataset is a balanced panel of N = 14, 334 river basins in Africa that we

observed over eight years (from 2016–2023). These basins, drawn from the Hy-

droBASINS dataset [see Lehner and Grill, 2013], are delineated using information

on water body locations, elevation, terrain slope, and stream gradients. The dataset

has a hierarchical structure with twelve nested levels, where basins at each level are

of comparable size, of which we use the most fine-scale Level 12.10 The key feature of

river basins is their directional water flow — water only moves downstream, meaning

that upstream basins remain unaffected by conditions further down the stream. For

our analysis, we classify basins into three categories:

1. mine-basins, with a mine site in their catchment area,

2. downstream basins, which are downstream of any mine-basin,

3. upstream basins, which are upstream of all connected mine-basins.

For this classification, we consider up- and downstream chains of basins (departing

from mine-basins) with a maximum order of ten (or an average river distance of 105

km).11

We observe a total of 1,900 mine-basins, 6,307 upstream, and 6,127 downstream

basins, which are visualized in Figure 3. (For a summary of orders and distance,

see Table E2 in the Appendix.) Their average size is 120 km2, for a total area

of 1,701,343 km2. Each basin in our dataset is unique, although they may be re-

lated to multiple mine-basins. In this case, we associate the basin with the nearest

mine-basin. The next (i.e., order one) downstream basin is unique for each basin, but

there may be multiple upstream basins of any given order. This is because streams

10At Level 12, there are 241,026 basins on the African continent that cover an average ({5, 50, 95}th
percentile) area of 124.4 (11.6, 131.4, 218.9) km2.

11Our analysis is focused on the immediate vicinity, and more restrictive sample subsets are con-
sidered as robustness checks for our results.
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Upstream
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0
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1,000 km
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Figure 3: Basins in the sample and their treatment status. Basemap imagery provided by
Esri, Maxar, Earthstar Geographics, and the GIS User Community.

can join, but do not split in the direction of their flow (compare the basins labeled

‘−4’ in Figure 1). Not all mine-basins have a full set of up- or downstream basins,

and the number generally decreases with order. When mine-basins are located in

or near the top or bottom branch of a river network, or if another mine-basin is

situated up- or downstream of the mine-basin, there will be fewer relevant basins

up- and downstream. More details on the basin data are provided in Appendix A.

Summary statistics Table 1 presents summary statistics for the most important

variables used. This includes vegetation indices, geographical information on ele-

vation and slope, meteorological information on temperature and precipitation, as

well as population and accessibility to urban areas. Variables are mapped from a

raster level to the level of basins, with the exact procedures described below. Table 1

shows that vegetation indices using the cropland mask are slightly higher than for

the general vegetation mask. Since not all basins contain croplands, the sample that

we use to assess impacts on agricultural productivity is smaller. The variables ex-

hibit strong variation across our sample, including, e.g., high and low altitude basins

as well as densely populated and unpopulated ones. The characteristics of up- and
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downstream basins are well-balanced across covariates.12 Downstream basins ex-

hibit slightly higher precipitation, and are more populated, but less accessible, and

lie at lower altitudes. These minuscule differences across our treatment and control

groups alleviate concerns of potential non-comparability.

Table 1: Summary statistics for the basin-level dataset.

Variable Unit NT Mean St. Dev. Min. Max.

Peak Vegetation Index [−1, 1] 110,576 0.428 0.154 0.016 0.993
Mean Vegetation Index [−1, 1] 110,576 0.279 0.112 −0.021 0.578
Peak Cropland Veg. Index [−1, 1] 93,036 0.464 0.133 −0.068 0.978
Mean Cropland Veg. Index [−1, 1] 93,036 0.298 0.101 −0.104 0.601
Elevation Meters 110,568 820.4 481.1 −118.3 3,059.7
Slope Degrees 110,568 2.23 2.34 0.0 20.9
Max. Temperature Degree Celsius 110,572 34.3 3.9 15.6 48.8
Precipitation Millimeters 110,576 901.8 595.2 0.64 4,456.7
Population Capita 110,576 8,471 37,716 0.0 1,396,921
Accessibility Minutes 110,528 164.3 179.1 1.0 2,659.9

3.1.1. Vegetation and agriculture

To measure agricultural productivity and vegetation health, we rely on the remotely

sensed Enhanced Vegetation Index (EVI). The EVI offers important advantages

over traditional crop statistics for our analysis. It offers the high spatial granularity

needed to measure localized impacts, is frequently available over the investigated

period, and it is consistent over time and space, avoiding cross-country differences

in calculation and reporting.

We process the raw EVI data [by Didan, 2015, ; available every 16 days at a

250 m resolution] in several steps to create our outcome measures. First, we apply

quality filters to minimize the impact of cloud cover. Then, we use yearly land use

masks [from the European Space Agency’s (ESA) Climate Change Initiative (CCI),

by Defourny et al., 2024, ; available at a 300 m resolution] to identify relevant

areas with croplands and vegetation, while excluding irrelevant features such as

water bodies. For each basin, we aggregate the mean EVI over 16-day periods and

compute the annual maximum EVI, producing a peak vegetation index. This peak

12See Table E3 in the Appendix for summary statistics that are split by treatment status, Fig-
ure D11 for a visualization of sample distributions of geophysical and meteorological variables.
Appendix C3.1 includes further information about balance, and Figure D12 shows absolute
standardized mean differences for all variables.
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index correlates strongly with measures of gross primary production of vegetation

[see Shi et al., 2017, for an assessment] and crop yields [see, e.g., Azzari et al., 2017,

Johnson, 2016].

We apply two different land use masks to create two distinct outcome measures.

For agricultural productivity, we focus on all forms of croplands as well as mosaics

between croplands and natural vegetation, which are common classifications for

the small-scale farming that is common in Africa. For general vegetation health,

we additionally consider land use classes comprising trees, shrubland, grassland as

well as sparse and flooded natural vegetation. As a robustness check, we consider

an alternative cropland mask that is specifically targeted to the African continent

[Digital Earth Africa, 2022]. This mask is only available for 2019 (which introduces

noise), but yields results that are qualitatively and quantitatively similar.

While the EVI offers several advantages over alternative vegetation indices [see

Zeng et al., 2022, for a recent review], we validate our findings using the Normalized

Difference Vegetation Index (NDVI) as an alternative outcome measure and find

comparable results. We also link our EVI-based measures to agricultural yields

and production values from AReNA-DHS [IFPRI, 2020] for additional validation in

our setting and to gauge the quantity of impacts measured. While the EVI provides

consistent measurements at a fine scale, it has limitations: it does not capture specific

crops or yields, displaying heterogeneous correlations, complicating interpretation,

and introducing noise into the analysis.

We consider a number of robustness checks to limit the impacts of our specific

choice of outcome variables. This includes the aforementioned alternative infor-

mation sources, [NDVI, AReNA-DHS, and Digital Earth Africa, 2022] as well as

alternative aggregation procedures and land use masks. For one, we use the annual

mean EVI instead of the maximum, to capture the full year. We also compute the

pixel-level maximum before aggregating to better capture vegetation with different

peak timings. Finally, we test a narrower version of the vegetation mask that ex-

cludes sparse and flooded natural vegetation. As we show in Section 4.3, our results

remain robust across these variations.

3.1.2. Treatment

Our treatment is derived from the spatial location of mining sites, which we obtain

from Maus et al. [2022]. Their dataset integrates multiple sources, including the SNL
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Metals & Mining database, and provides comprehensive coverage of both industrial

and artisanal mining operations. This source offers two key advantages over other

databases. First, it addresses the noise in commonly used point location data by

verifying actual mine locations through satellite imagery. Second, Maus et al. [2022]

scan for and delineate mining areas (including features such as tailings dams, waste

rock dumps, water ponds, and processing plants) within a 10-kilometer buffer around

known locations, allowing them to capture smaller artisanal mining operations that

often develop near larger industrial sites. This helps minimize potential attenuation

of our estimates that could occur from missing or misclassified mine locations.

While the dataset by Maus et al. [2022] provides extensive spatial coverage, it

lacks mine characteristics and temporal information beyond being anchored in 2019.

This limitation, however, is less concerning given the persistence of mines and their

impacts. Pollution from mines may persist long after operations have ceased [e.g.

Audry et al., 2004], and even ‘inactive’ mines continue to affect local environments

through illegal artisanal mining and ongoing pollution from tailings [Macklin et al.,

2023]. To still address these limitations in our analysis and investigate potential

heterogeneities, we (a) evaluate time-based subsets, (b) differentiate between active

and inactive sites using longitudinal mine site data [from Sepin et al., 2025], and (c)

incorporate information on commodity types from supplementary sources.13

To construct our treatment variable, we first identify mine-basins by intersecting

the centroids of mining sites from Maus et al. [2022] with hydrological basins from

Lehner and Grill [2013]. We then classify basins as upstream or downstream rela-

tive to these mine-basins (as described above), with downstream basins forming our

treatment group and upstream basins serving as controls. While mine-basins them-

selves are also treated, the water-mediated effects within them are not identified by

our research design, and not interpreted by us. We consider basins up to order ten,

but focus our analysis on the first three basins in either direction, as they share

characteristics and would be most strongly impacted by the treatment.

We measure treatment intensity in terms of the distance to the mine-basin. For

our primary specification, we consider the ordinal position of basins relative to the

mine-basin as the treatment variable. This agnostic approach avoids common spec-

13Specifically, the Global Energy Monitor database, as well as S&P Global Market Intelligence
[2025], Jasansky et al. [2023], Padilla et al. [2021]
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ification issues in regression discontinuity designs,14 while sacrificing degrees of free-

dom. Additionally, we consider different specifications based on river distance. Es-

timates from an exponential decay specification that we use to extrapolate insights,

and alternative linear-quadratic distance specifications, including established robust

methods, appear in Appendix C3.

3.1.3. Other factors

We consider several covariates that could confound our analysis of mining impacts

or add more in-depth insights to it. Our selection of control variables is particularly

focused on geographical characteristics that relate directly to river basin delineation,

and ones that could create imbalances between treatment and control groups.

For the key geographic variables of elevation and slope, which define the flow along

basins as well as their boundaries, we utilize high-resolution gridded data [Amatulli

et al., 2018]. We aggregate this data from its original 30 arcsecond resolution (ap-

proximately 802–926 meters in our study area) to the basin level by averaging. Soil

characteristics also influence vegetation health and may vary systematically with

elevation. To account for this, we determine the primary soil class in each basin

based on data from the SoilGrids project [Hengl et al., 2017], which has a 250-meter

resolution.

Climate and socioeconomic factors become increasingly important at larger dis-

tances from mine sites, where treatment and control groups may diverge system-

atically. As climate controls, we use precipitation data from the Climate Hazards

Center InfraRed Precipitation with Station (CHIRPS) dataset [Funk et al., 2015],

which is particularly accurate for Africa [Dinku et al., 2018], as well as temperature

data from TerraClimate [Abatzoglou et al., 2018]. Both datasets provide monthly

measurements at resolutions of approximately 4 and 5 kilometers. As an alternative,

we also consider meteorological data from the Climatic Research Unit [Harris et al.,

2020]. Following established practices in research of vegetation dynamics, we use

annual precipitation totals and maximum monthly temperatures in our analysis.

For socioeconomic controls, we include the total population [from WorldPop] and

average accessibility, measured by the travel time to the nearest city [Weiss et al.,

2018], per basin. Both datasets provide information at a 1-kilometer resolution and

14For instance, the choice of appropriate polynomials or bandwidth for continuous running variables;
see Cattaneo et al. [2019], Gelman and Imbens [2019]
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are aggregated to the basin level. We use values from 2015 to control for initial

conditions in our study period. To further isolate the effect of interest from possible

mediators, we also consider the number of violent events from the Armed Conflict

Location and Event Database [ACLED; Raleigh et al., 2010] and average annual air

pollutant concentrations [from Shen et al., 2024].

Heterogeneity The impacts of mines may vary across different environmental con-

ditions and mine characteristics. We investigate this by examining heterogeneity

across four main dimensions.

First, we assess spatial heterogeneities of basins. We differentiate them by biomes

using the Ecoregion classification of Dinerstein et al. [2017], which divides ecosys-

tems of regional extent that capture different types of agriculture and vegetation.

Furthermore, we consider country groups based on their primary crops and varying

crop calendar cycles, based on the regional classification of the US Department of

Agriculture (USDA).15 These environmental categorizations help us understand how

mining impacts might differ across diverse ecological contexts.

Second, we analyze how the intensity of mining operations and the activity of

mining sites relates to their impacts. We proxy for intensity via the total mine

area per mine-basin, and use the development of mining areas over time to proxy

for activity. For the latter, we rely on a longitudinal extension of the mine dataset

by Sepin et al. [2025], who automatically delineate mining sites over time using a

segmentation model and high-resolution satellite imagery. The temporal information

allows us to identify active mines based on their growth, and assess their specific

impacts.

Third, we investigate whether impacts vary by the types of minerals being ex-

tracted, as different commodities use different processes, chemicals and techniques,

and coincide with different waste metals. For this analysis, we collate various data

sources and predict the most likely commodities mined in each basin using Gaus-

sian process regression (which is detailed in Appendix C2). This helps us identify

particularly important types of mining sites.

Lastly, we examine how effects differ based on land suitability for agriculture.

Using information from the Global Agro-Ecological Zones (GAEZ) modeling frame-

15The classification (available at ipad.fas.usda.gov) divides the continent into North Africa, South-
ern Africa, East Africa, and West Africa; due to limited observations, we merge North and East
Africa.
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work [Fischer et al., 2021], we construct a composite measure of crop suitability for

each basin. We calculate average suitabilities for thirty crop types per basin, and

select the maximum value that represents the suitability for the best-suited crop.

Then, we categorize basins into high, medium, and low productivity classes, allowing

us to assess which agricultural areas are most affected by mining.

3.2. Empirical strategy

We employ a regression discontinuity design (RDD) to identify the causal effects of

mines on vegetation and agricultural productivity downstream. Our identification

strategy exploits the natural discontinuity in the exposure to pollution along river

networks. Basins downstream of mines are exposed to contaminated water, while

upstream basins remain unaffected and can serve as controls.

Our application differs from standard RDDs in minor, but notable ways. Our

running variable — the distance to the mine basin — has a natural direction and

coincides with the treatment intensity. This directional feature strengthens our

identification strategy, while the latter presents an opportunity to investigate impact

decay. We also observe outcomes at the discontinuity itself. While parts of the mine

basin are impacted by contaminated water, others are not, and other third effects of

the mine may be present without a suitable control. Impacts on-site provide useful

information and suggestive evidence for further impacts of mine sites, but are not

identified by our strategy.

Let x denote the directed distance from the mine, where we have x = 0 at the

mine basin and x < 0 before it. Following the notation of Gelman and Imbens

[2019], we can express the treatment effect as

τ(x) = E [yi(1)− yi(0) | xi = x] ,

where yi(1), yi(0) are potential outcomes of observation i under treatment and con-

trol conditions. We estimate the average treatment effect using the difference in

conditional means between downstream and upstream locations:

τ(x)ATE = E
[
yobsi | xi = x, x > 0

]
− E

[
yobsi | xi = x, x < 0

]
.
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Our estimation equation is

yimt = β′F (xi) + θ′Wit + µm + ψt + εimt, (1)

where yimt represents vegetation in basin i near mine m at time t, and xi is the

running distance. The vector Wit contains basin characteristics,16 while µm and ψt

represent mine- and year-fixed effects. The error term εimt is clustered by mine.

We operationalize distance via the function F (·), which returns a vector, separating

upstream, downstream, and mine basins.

Main specification Our preferred specification uses the basin order as distance, i.e.,

xi ∈ {−10, . . . , 10}, and operationalizes it via indicators. This approach highlights

basin to basin discrepancies and remains agnostic about functional forms, instead

relying on local information at the level of our observations. Specifically, we let F (·)
return indicators

f(x)j = I (x = j) for j ∈ {−10, . . . ,−2, 0, 1, . . . 10} .

Here, we omit the first upstream basin (order −1) as the reference category. Our

design identifies differences between estimates at equivalent (absolute) distance (e.g.,

τ(8) = β8 − β−8), which we report as effect of interest. For ease of interpretation,

we also report pooled estimates comparing the first three basins.17

River distance specification To assess the decay of impacts systematically, we

specify an alternative model using the river distance in kilometers as the running

variable. We operationalize this as

F (x) = exp {−γ × |x|}+ I (x = 0) + exp {−δ × x} × I (x > 0) ,

where + separates variables, and the parameters γ, δ capture the rates of exponential

impact decay. The exponential form assumes that impact decay is proportional to

the impact level, a common assumption in analyses of water pollution. Compared to

linear and linear-quadratic functional forms (which we also consider), this functional

16Of the main set of covariates, only the meteorological variables are time-varying; the other vari-
ables are time-invariant (geophysical) or fixed at pre-period levels (socioeconomic).

17We let f(x)J = I (x ∈ J ) for J ∈ {−10, . . . ,−4, 0, {1, 2, 3} , 4, . . . 10} , and focus on β{1,2,3}.
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form allocates more leverage, and thus higher influence, to observations at shorter

distances and not vice versa.

3.2.1. Identifying assumption

Our key identifying assumption posits no other discontinuous changes impacting

vegetation at the mine basin. While not directly testable, several factors support

the plausibility of this assumption. River basins are delineated by natural geographic

features that vary smoothly across space. Our use of the most granular basin level

(Level 12) minimizes systematic differences between adjacent basins.

To validate our results, we conduct a battery of robustness checks to address

potential threats to identification. First, we control for an extensive set of basin

characteristics: geophysical features (elevation, slope, distance to coast, soil compo-

sition), meteorological conditions (temperature, precipitation), and socioeconomic

indicators (population, accessibility, conflict). Second, we use these variables as

placebo outcomes and look for discontinuities at mine basins, which would violate

or identifying assumption. Third, we implement a matching procedure based on

these covariates to ensure that up- and downstream basins are comparable across

relevant dimensions. This reduces model dependency and strengthens our argument

for causal effects.

As an additional set of robustness checks, we vary the sample definition to ensure

that our results are not driven by our particular sample. Our main sample is already

limited to the vicinity of mines (the maximum order of ten corresponds to an average

distance of 100 km), and we emphasize estimates for their immediate surroundings.

We also restrict this sample in additional ways. We (a) exclude the mine basin itself,

(b) only retain first order basins, and (c) only consider basin chains with at least one

up- and one downstream basin. To address temporal uncertainty stemming from the

mine dataset, we consider two subsamples: (d) post-2019, and (e) from 2018–2020.

Lastly, we repeatedly randomize the treatment assignment and compare estimates

with our sample. The consistency of results across these variations supports the

robustness of our findings.

These complementary approaches address different potential threats to identifica-

tion. The covariate controls and matching handle potential confounding variables,

the placebo tests check for other discontinuities, and the sample variations ensure

our results are not artifacts of particular specification choices. Together, they pro-
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vide strong support for our identification strategy, suggesting that estimates convey

the water-mediated impact of mines on vegetation.

4. Results

Our analysis reveals that mines significantly reduce vegetation health in downstream

areas through water pollution. We begin by focusing on effects in the immediate

vicinity of mines, i.e., downstream basins up to order three, for which causal iden-

tification is strongest. In Section 4.1, we investigate potential heterogeneities in

these impacts to better understand the underlying mechanisms. Next, we extrapo-

late beyond the immediate vicinity and investigate the reach and decay of effects in

Section 4.2. Finally, we assess the robustness of our estimates in Section 4.3.

Table 2 presents estimates of the impact of mines on general (left columns) and

cropland-specific (right columns) vegetation downstream, measured via a peak veg-

etation index, based on the EVI (Enhanced Vegetation Index). For each outcome,

we present estimates from both a plain specification without covariates and a fully

saturated specification with controls. The reported estimates represent the causally

identified average treatment effect (ATE), i.e., the difference in vegetation health be-

tween downstream (treated) and upstream (control) basins at equivalent distances

from mine basins. The upper panel of Table 2 shows results for individual basins

up to order five, while the lower panel pools the first three downstream basins to

provide a more statistically powerful and readily interpretable estimate of the im-

mediate effect. Complete results, with estimates for all basin orders and covariates,

are available in Table E4 in the Appendix.

The treatment indicators show statistically significant negative effects on vege-

tation downstream of mines, for both indices of general and cropland-specific veg-

etation. The (gradual) inclusion of covariates changes estimates only marginally

(see Table E4 for extended results), suggesting that findings are not driven by con-

founding factors. Estimates suggest that the effect permeates the immediate vicinity

and may extend beyond them with similar magnitude, though declining statistical

significance.

For general vegetation, the estimated ATEs for the first three basins downstream

of the mine are −0.0057 and −0.0056 (with and without covariates) and highly

significant (p < 0.01). This is mirrored by estimates for individual basins, where

22



Mines → Rivers → Yields

Table 2: Main estimation results.

Outcome Peak Vegetation Peak Cropland Veg.
(Specification) (Plain) (Full) (Plain) (Full)

Individual Order
Downstream (1st) -0.0045∗∗∗ -0.0043∗∗ -0.0051∗∗ -0.0050∗∗

(0.0017) (0.0018) (0.0025) (0.0025)

Downstream (2nd) -0.0049∗∗ -0.0048∗∗ -0.0058∗ -0.0067∗∗

(0.0022) (0.0024) (0.0031) (0.0032)
Downstream (3rd) -0.0085∗∗∗ -0.0087∗∗∗ -0.0088∗∗ -0.0099∗∗∗

(0.0028) (0.0029) (0.0037) (0.0038)

Downstream (4th) -0.0049∗ -0.0062∗ -0.0029 -0.0044
(0.0030) (0.0033) (0.0038) (0.0040)

Downstream (5th) -0.0034 -0.0053 0.0007 -0.0016
(0.0033) (0.0037) (0.0042) (0.0045)

Fit statistics
Observations 110,576 110,524 93,036 93,000
R2 0.903 0.908 0.816 0.822

Pooled Order
Downstream (1st–3rd) -0.0057∗∗∗ -0.0056∗∗∗ -0.0064∗∗ -0.0068∗∗∗

(0.0018) (0.0020) (0.0025) (0.0026)
Fit statistics

Observations 110,576 110,524 93,036 93,000
R2 0.903 0.908 0.816 0.822

Controls
Geophysical No Yes No Yes
Meteorological No Yes No Yes
Socioeconomic No Yes No Yes

Fixed-effects
Year (2016–2023) Yes Yes Yes Yes
Mine Yes Yes Yes Yes

Note: The table reports estimates of the average treatment effects by basin order based on
Equation (1). The left columns hold results for the overall peak vegetation index; the right
columns for the cropland-specific peak vegetation index. The first and third column include no
covariates, whereas columns two and four include the full set of control variables. Estimates in the
upper panel correspond to the average effect at individual orders, while the lower panel reports a
pooled estimate for the three basins that are immediately adjacent to the mine basin. All
specifications include mine and year fixed effects. Standard errors are (in brackets) and clustered
at the mine level; significance levels are indicated as ***: 0.01, **: 0.05, *: 0.1.
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ATE for the first three basins are significant (p < 0.05) and range from −0.0043 to

−0.0087. Estimates for the subsequent basins, including the fourth and fifth down-

stream basin, are consistently negative, but show a drop of statistical significance

and a minor drop in magnitude. The reductions in the immediate vicinity corre-

spond to a 1.28–1.35% decrease relative to the sample mean. The impacted area,

i.e., vegetation in the first three downstream basins, stretches across 255,000 km2.

For croplands, the estimated ATEs are slightly larger. For the first three basins

downstream of the mine, estimates are −0.0064 and −0.0068 (with and without co-

variates) and highly significant (p < 0.01). Individual-level estimates for these basins

range from −0.0050 to −0.0099 and are significant (p < 0.05) with one exception.

Results for higher-order basins are similar to those for maximum vegetation, but the

drop in magnitude is larger and there is one instance of an (insignificant) positive

estimate. Compared to the sample mean, these estimates imply an index reduction

of 1.38–1.47% over an affected cropland area of 74,000 km2.

Contextualizing impacts To translate these peak vegetation index reductions into

agricultural terms, we correlated our measure with direct measures of agricultural

productivity (from AReNA-DHS, see Appendix B2). We estimate that being im-

mediately downstream of a mine is associated with a 0.57–0.61% decrease in cereal

yields, a 1.59–1.70% decrease in the value of cereal production, and a 2.16–2.31%

decrease in the value of overall crop production. The scale of these impacts be-

comes apparent when considering the affected area — the first three downstream

basins cover 280,000 km2, 74,000 of which are croplands. This corresponds to the

total cropland area of Ghana, falling just between the cropland areas of the United

Kingdom and Malaysia.

Using an average cereals yield of two tons per hectare (based on AReNA-DHS),

this corresponds to an annual loss of 91,000 tons of cereals for consumption. For

additional context, the World Food Programme (WFP), the largest humanitarian

organization globally, distributed approximately 1.7 million tons of food to over 38

million recipients in African countries in 2023. Our conservative estimate of the

agricultural production loss caused by water pollution from mines, just in their

immediate vicinity, represents about 5.4% of this major food aid program.
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4.1. Heterogeneity

Next, we investigate how our results vary along several dimensions to identify where

mining impacts on vegetation and agriculture are most pronounced. We examine

heterogeneity related to the characteristics of basins (biome, regions, and suitability

for crop cultivation) as well as mine characteristics (total mining area, activity, and

commodity type).

Figure 4 provides an overview of the results. We present specifications with full

controls and pooled estimates for the first three basins, allowing for full heterogeneity

by re-estimating with different subsets of the sample. Estimation results are available

in Table E6 and Table E7 in the Appendix.

Environmental heterogeneity We first analyze spatial heterogeneities of basins,

which are visualized in the upper half of Figure 4. To check for differences across

biomes, we assign each basin to one of three broad ecological groups — grasslands,

forests, and deserts — that are aggregated from the more granular ecoregions of

Dinerstein et al. [2017]. We find negative effects for both the grassland and forest

biomes. Grasslands constitute 69% of the vegetation sample and 74% of the cropland

sample, while forests make up 15% and 17%. The effect sizes are comparable to

the baseline, although impacts in forest biomes appear somewhat larger. In desert

biomes (representing 15% and 8% of the sample), we find no significant effect on

either the cropland or overall peak vegetation, likely reflecting limited vegetation to

be impacted in these regions.

For regional differences, we separate samples based on the classification system

of the USDA.18 We find substantial effects in West Africa, which represents 29%

of the vegetation sample and 26% of the cropland sample. In Southern Africa

(61% and 64%) or North & East Africa (10%), we find no significant effects. This

regional disparity likely relates to mining practices and commodity types — artisanal

gold mining is particularly common in West Africa. Additionally, our identification

strategy may reach its limits in the case of South Africa, where a vast cluster of mines

permeates entire basin systems, complicating the isolation of downstream effects.

18The system seeks to reflect differences in crop types and cycles. The regions are West Africa (with
the Burkina Faso, Guinea, Mali, Ghana, Nigeria, and Niger as the most represented countries
with over 250 basins), Southern Africa (with South Africa, Zimbabwe, Namibia, Tanzania,
Botswana, Angola, the DRC, Zambia, and Mozambique), and North & East Africa (where only
Morocco exceeds 250 basins), which we pool.
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Figure 4: Dots indicate the average treatment effect in the first three basins; whiskered
lines indicate 90% and 95% confidence intervals.
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The agricultural potential of affected regions captures another important dimen-

sion of impacts. We follow the GAEZ framework in categorizing basins into high,

medium and low crop suitability groups, based on the maximum suitability across

30 crops. We find significant negative effects on basins with high crop suitability,

which comprise 36% of the vegetation and 39% of the cropland sample. These esti-

mates exceed the baseline for both the general and cropland-specific vegetation. In

contrast, estimates for medium (43% and 47%) and low suitability (22% and 13%)

are smaller and statistically insignificant. This pattern is concerning because more

than 35,000 km2 (over a third) of highly suitable land in the immediately affected

basins is actively used for crop production, raising concerns for subsistence farming

and food security.

Mine heterogeneity Turning to mine characteristics, we first examine whether

mine size influences downstream impacts. We progressively restrict the sample to

mine basins with mining areas of at least 0.5 km2, 1 km2, and 2.5 km2, which

reduces the sample to around 51%, 40%, and 25% of its original size. For overall

vegetation, we observe a clear increase in effect size as mining area increases. For

the 2.5 km2 cutoff, the estimate is 30% higher compared to the baseline. This result

aligns with expectations, as larger mines typically produce more discharge material

and cause stronger contamination of water systems. For croplands, however, we find

imprecise estimates with no discernible trend in magnitudes. We interpret this as

suggestive evidence for adaptation — farmers may respond to large, salient mine

sites by relocating or changing crops.

For mining activity, we use growth as a proxy and analyze subsets of active mines

that exhibited (i) any growth, (ii) at least 10% growth, or (iii) at least 25% growth

over the observed period. Our results show no substantial heterogeneity along this

dimension for either natural vegetation or the cropland vegetation. Effect estimates

remain stable, although precision decreases with smaller sample sizes (approximately

67%, 63%, and 55% of the baseline). This suggests that our dataset of mine loca-

tions, which is anchored in 2019, adequately captures the relevant impacts of mining

sites regardless of their status. The lack of heterogeneity may also reflect offsetting

factors: expanding mines might implement better precautions, while inactive, poorly

maintained sites could produce considerable pollution
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Finally, we examine how impacts vary by commodity types. Since our primary

dataset lacks commodity information, we compile data from related sources to iden-

tify the most likely commodity (or mix) at each mine site (see Appendix C2 for

details). We focus on four main commodities that are well-represented in the data

and for which we can reasonably exclude interference by other commodities: gold,

diamonds, copper, and coal. The results reveal a particularly strong negative effect

for gold mining, which we isolated in 26% of the vegetation and 29% of the cropland

sample. Compared to the baseline, point estimates for gold mining are 40% larger

for vegetation overall and 75% larger for croplands. This finding aligns with earlier

research identifying gold mining as especially damaging to agriculture and the envi-

ronment. Gold extraction uses toxic chemicals like mercury and sodium cyanide for

extraction,19 and artisanal gold miners rarely have the capacity or incentives to mit-

igate their impacts. Among other commodities — diamonds (13% of the sample),

copper (6%), and coal (8%) — only diamond mining shows marginally significant

negative effects on overall vegetation.

These heterogeneity findings show that the impacts of mining are not uniform,

but vary substantially across environmental conditions and mining practices. The

concentration of effects in agriculturally suitable areas, in West Africa, and for gold

mining highlights priorities for interventions and alleys for future research.

4.2. Impact decay

We have established significant and economically meaningful downstream impacts of

mining in the immediate vicinity. An important question remains, however: How far

downstream do these effects persist? The spatial extent of effects is crucial to under-

stand the overall impact, gauging the size of the externality, and designing effective

mitigation strategies. While critically important, this analysis extends beyond our

identification strategy — at greater distance basins diverge in characteristics and re-

sults cannot be interpreted as strictly causal. Our analysis here provides suggestive

evidence and highlights the potential overall stream-mediated impact of mining.

The range of impacts is related to the types of mediators that it arises from. Veg-

etation is affected by various types of water pollution from mining, including heavy

metals, acidification, and salinity (see Appendix B1 for further details). While con-

taminants gradually disperse along streams, buildup and tipping points could lead to

19Duncan [2020], Malone et al. [2023], Verbrugge et al. [2021]
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more persistent impacts. Acidification, for instance, is initially triggered by pollution

from mines but is sustained by extremophile microbes. We empirically investigate

the decay of impacts by (1) extrapolating our analysis beyond the immediate vicin-

ity, and (2) imposing an exponential decay functional form to estimate the speed of

decay.
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Figure 5: Estimated order coefficients for all up- and downstream basins (with the
mine-basin in the center) for the overall peak vegetation index (green circle) and
the cropland-specific index (yellow triangles) with full covariates. Whiskers represent
95%-confidence intervals.

Figure 5 visualizes estimates along basin orders, comparing all basins to the one

immediately upstream of the mine (order -1).20 If mines had no impacts, we would

expect flat estimates across all basin orders. Non-directed mine impacts (e.g., from

air pollution) would appear as a V-shape, where the right ‘wing’ of the V would be

shifted by downstream effects and rotated if these effects decay with distance.

The figure reveals three notable patterns. First, negative impacts persist beyond

the immediate vicinity of mines; effects appear to increase in size after the sixth

basin. Second, trajectories differ slightly between general vegetation and croplands.

Croplands suffer slightly larger impacts near mines but show more decay at larger

20The visualization differs from the coefficients in Table 2 and Table E4 (which report differences
between equidistant up- and downstream basins, and not deviations from the first upstream
basin) to better convey changes from basin to basin.
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distances. Impacts on general vegetation are more persistent, yielding significant

negative estimates even at large distances. This discrepancy may reflect adaptation

behavior by farmers, a result that is supported by our heterogeneity analysis. Third,

there is an indication of a V-shaped pattern upstream, with the right side being

rotated and shifted downward.

To further investigate decay patterns, we apply an exponential distance decay

function to the downstream distance, which aligns with hydrological models of con-

taminant dissipation. The detailed results appear in Appendix C1.1. In addition to

the strength of the effect, we estimate the rate of decay and allow it to vary from

meter to kilometer scales. We find minimal decay over our sample range, and overall

impacts that are comparable to the immediate vicinity of mines. The effect on over-

all vegetation downstream begins at −0.0062 and halves after 281 km, which extends

beyond the support of our sample. For croplands, the effect begins at −0.0068 and

decays by half at a distance of 72 km, diminishing to 10% of its initial value at 234

km.

These findings highlight that vast areas downstream of mines may be impacted by

their water pollution, extending considerably beyond the immediate vicinity exam-

ined in our main analysis [also see Macklin et al., 2023]. Isolating the nature of these

effects and identifying specific mechanisms driving them is an important avenue for

future research.

4.3. Robustness

To ensure the validity of our main findings, we conduct a comprehensive set of

robustness checks that address potential concerns about our empirical strategy. We

organize these robustness checks into six categories: (i) included covariates, (ii)

outcome measures, (iii) sample definition, (iv) unobserved factors, (v) covariate

balance, and (vi) placebo tests. Figure 6 visualizes estimates under these various

checks; the complete results appear in the Appendix.21

Covariates First, we examine whether our results are sensitive to the choice of

control variables. We test four variations: (1) adding controls for air pollution based

on PM2.5 concentrations, (2) controlling for conflict intensity, (3) using distance

21Further details are provided in Appendix C3.1 and Appendix C3.2; Tables E8 to E11 report the
full estimates.
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Figure 6: Dots indicate the average treatment effect in the first three basins; whiskered
lines indicate 90% and 95% confidence intervals.
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to coast as a geographic control, and (4) using alternative meteorological data for

rainfall and temperature. None of these modifications substantially alter our baseline

findings, suggesting that our results are not driven by omitted variables related to

these factors.

Outcome measures Next, we assess whether our results depend on our specific

choice of outcome variables. We (1) substitute the EVI with the Normalized Differ-

ence Vegetation Index (NDVI), and (2) use alternative land use masks for vegetation

and cropland-specific vegetation index.22 We also (3) construct the peak EVI to re-

flect pixel-level peaks (accounting for varying seasonality) before aggregation to the

basin level, and (4) use the mean annual EVI to reflect vegetation over the full year,

instead of the peak value. These variations change the magnitude of estimates due

to different sample moments, but the qualitative results remain consistent, showing

significant negative effects of mines on downstream vegetation.

Sample definition We also verify the robustness of our results across different

sample restrictions. First, we focus on periods around the 2019 satellite imagery used

in mine delineation: (1) the post-2019 period only, and (2) a narrower 2018–2020

window. Second, we modify the spatial sample by (3) only including basin systems

with at least one up- and downstream basin, (4) excluding mine basins entirely, and

(5) analyzing only immediate first-order basins. While the precision of estimates

decreases with smaller samples, our key finding remains robust.

Unobserved factors We further account for potentially confounding, unobservable

factors through additional fixed effects structures. We introduce hierarchical fixed

effects at the (1) Level 6 and (2) Level 8 super-basins, which contain an average of

67 and 6 of our Level 12 basins. We also (3) add country-by-year fixed effects to

control for changing national conditions, and (4) include mine-specific linear time

trends. These specifications yield consistent results, indicating that our findings are

not driven by unobserved spatial or temporal factors.

Covariate balance To address potential imbalance between treatment and control

groups, we use coarsened exact matching [Iacus et al., 2012]. We match upstream

22We use a narrower version for the vegetation mask that excludes sparse and flooded vegetation,
and an Africa-specific cropland mask that is anchored in 2019 [Digital Earth Africa, 2022].
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and downstream basins on (1) elevation, slope, and soil type in a basic specification,

then add (2) temperature, and precipitation in an extended version. The matched

samples achieve excellent balance on observables (see Figure D11 and Figure D12 in

the Appendix), and the resulting estimates are significant and of larger magnitude.

This further corroborates the validity of our identification strategy.

Placebos Finally, we conduct two additional validation exercises. First, we ran-

domly reassign the treatment status across basins and re-estimate a total of 5,000

times, finding no evidence of the impacts observed in our actual analysis (see Ap-

pendix C3.2 for details, and Figure D10 for results). Second, we use our control

variables as placebo outcomes and find no discontinuities at mine locations (see Ap-

pendix C3.3 for details), confirming that our identification strategy isolates mining

impacts rather than pre-existing environmental or social differences.

Collectively, these robustness checks demonstrate that our findings of negative

mining impacts on downstream vegetation and agriculture remain consistent for

diverse specifications. This consistency strengthens confidence in our causal inter-

pretation and the reliability of our results.

5. Discussion

Our results provide strong causal evidence for water-mediated effects of mines on veg-

etation and agriculture. We find reductions of peak vegetation indices of 1.28–1.35%

for all vegetation and 1.38–1.47% for croplands specifically. In this section, we dis-

cuss the mechanisms behind these impacts, how to interpret them, which limitations

to be aware of, and what our results imply for policy and future research.

5.1. Mechanisms

Our research design identifies mining impacts on vegetation that are specifically

mediated by water streams, separating them from other effects of mining. Two

main mechanisms help explain our findings — water pollution and human responses

to it.
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Water pollution

Water pollution emerges as the dominant and evident mechanism behind our ob-

served effects. It is a major and well-documented externality of mining, and Sub-Saharan

Africa has been projected to become a global hotspot for it [Jones et al., 2023]. Our

main results only provide indirect evidence for this mechanism, so we additionally

analyze available water quality data [from United Nations Environment Programme,

2025] to help confirm the role of water pollution in Appendix B3. The data shows

that water quality is markedly lower in mine basins and downstream regions as com-

pared to upstream basins. Key indicators — including electrical conductivity (mea-

suring salinity), sodium discharge and adsorption, and sulfate concentrations (which

can cause acidification) — show patterns that are consistent with mine-induced pol-

lution.

Water quality data supports our interpretation, but comes with important limi-

tations. Available samples from our observation period are exclusively from South

Africa [water quality monitoring is notoriously sparse in Africa; see Jones et al.,

2024], were obtained at irregular intervals, and analyzed using different methods.

Critically, they lack measurements of heavy metals, which are among the most harm-

ful mining pollutants, and specific chemicals used in ore processing. This prevents us

from directly differentiating between, e.g., mercury-based or cyanide-based process-

ing in gold mining, which could affect both the magnitude and reach of environmental

impacts [Verbrugge et al., 2021].

Adaptation responses

Human adaptation represents a secondary mechanism influencing our results. Farm-

ers may respond to water pollution in ways that could amplify or attenuate our

measured impacts on vegetation and agriculture.

Evidence from related literature on air pollution suggests complex response pat-

terns. While pollution primarily affects plant growth directly, it also affects the

health, and, in turn, labor supply and productivity of farmers.23. These impacts

can further affect income, the allocation of land and labor, and other relevant fac-

tors. The final result of these effects is ambiguous, but their magnitude is likely

23Aragón and Rud [2015], Fugiel et al. [2017], Kotsadam and Tolonen [2016], Miao et al. [2017]
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constrained in our context, where little fertilizer is used, and significant market

frictions exist that deter migration [Chen et al., 2022].

In the case of directed water pollution, the adaptation of farmers plays an im-

portant, immediate role. Farmers could shift towards cultivating crops with greater

resilience to water pollution — substituting, for instance, lentil and maize for barley

and millet, which tolerate higher levels of salinity [Page et al., 2021]. Agricultural

practices present another opportunity for adaptation. Importantly, farmers may

reduce their reliance on irrigation (or decide against transitioning to it in the first

place) if water is contaminated.24 We do not directly capture adaptation behav-

iors, but they represent important avenues for future research and opportunities for

mitigation.

5.2. Interpretation

Our analysis reveals mines’ considerable downstream impacts on vegetation and

agriculture, which are mediated by water pollution and adaptation, and thus likely

to accumulate and persist for many years. We find that the peak cropland vegetation

index is reduced by 1.38–1.47% of the sample mean. This effect size aligns with

other studies that use vegetation indices to approximate agricultural productivity.

For instance, Wuepper and Finger [2022] also use the peak annual EVI to proxy for

yields in 1 km2 grid-cells and find a 2.2% change in yields per step on their ten-step

index of institutions. Similarly, Asher and Novosad [2020] proxy agricultural yields

via the EVI, and find a 1.7 percent increase from the construction of new roads.

Translating these results into agricultural terms, we estimate that being immedi-

ately downstream of a mine is associated with at least a 0.57–0.61% decrease in cereal

yields, a 1.59–1.70% decrease in the value of cereal production, and a 2.16–2.31% de-

crease in the value of overall crop production. More than 74,000 km2 of smallholder

croplands are immediately affected (i.e., up to around 33 km downstream of mine

basins). This implies annual losses of over 91,000 tons of harvested cereal crops,

although our evidence suggests that effects may reach much farther downstream,

affecting considerably larger areas.

Importantly, our results only reflect one specific pathway among the many exter-

nalities of mines. Agriculture and vegetation are also affected by other mining-related

24While rainfed agriculture is not unaffected (water pollution affects groundwater and soil), impacts
are likely attenuated through the water cycle.
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factors, such as air pollution [Fugiel et al., 2017], which our research design does not

capture. Meanwhile, water pollution from mines creates numerous other negative

effects, including water scarcity, biodiversity loss, and detrimental impacts on hu-

man health and cognition [Gittard and Hu, 2024, Van Vliet et al., 2017, Vörösmarty

et al., 2010].

While our findings must be understood within this wider context, we have reason

to believe that our estimates provide a lower bound for the specific water-mediated

pathway. First, our results reflect post-adaptation outcomes, incorporating miti-

gating behaviors that farmers adopt in response to pollution. Second, the limited

use of irrigation means that estimates are attenuated and the full extent of impacts

does not emerge in practice. Third, our analysis is only focused on the immediate

vicinity of mines, where our research design allows for strong causal claims. Finally,

various sources of noise in our data represent a major limitation that likely leads to

conservative estimates of true impacts.

5.3. Limitations

Our analysis faces limitations that warrant discussion. Excess uncertainty from noisy

measurements is an important example, with reliance on remotely sensed vegetation

indices as a first source. While they offer consistent and highly granular measures

of vegetation health that enable our analysis, they come with inherent constraints.

Our peak vegetation indices perform well as a proxy, but do not capture all relevant

phases of crop development. Robustness checks with alternative measures soothe

pressing concerns, but cannot convey a full picture. Singular metrics cannot fully

capture the heterogeneity of impacts across different crop types, soil types, and cli-

matic conditions [Bolton and Friedl, 2013], and there is limited data for calibration.

While we relate our outcome measure to local agricultural data, this introduces

additional noise and likely results in attenuated estimates. Future research with

a narrower geographical focus could address this limitation by combining remote

sensing with more accurate and detailed agricultural data.

A second limitation concerns the information available about mining operations.

While we use a comprehensive dataset of mine sites with verified locations and their

surroundings (within a ten-kilometer radius), these data have constraints [see Maus

et al., 2022, Maus and Werner, 2024]. Much relevant information on mining sites

— including their status, activity, production methods, and commodities mined —
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is not directly available. We address this limitation partially by assessing mining

area growth over time and adding commodity information through supplementary

sources. However, we cannot disentangle artisanal and industrial mining operations,

which likely differ in management, processing, and impacts [Girard et al., 2024], and

lack detailed information to narrow down relevant mechanisms.

Lastly, our study only offers suggestive evidence for specific mechanisms and the

total range and impact of observed effects. Data on water quality and pollution

are scarce, and the available information is geographically patchy and inconsistent.

We investigate heterogeneity for different subsets, e.g., based on commodity types,

location, and mine growth, to infer potential mechanisms, but do not provide direct

evidence for specific mining activities impacting vegetation. Meanwhile, our research

design provides the conditions for identifying local treatment effects, but cannot

provide causal evidence for their reach. More in-depth analysis of mechanisms and

the reach of effects is left to future work.

5.4. Outlook

Our results have important implications for future research and policy. Two key

goals are (1) overcoming data scarcity, which constrains both scientific understand-

ing and policy responses, and (2) implementing targeted interventions at various

governance levels to mitigate the external costs of mining.

Data scarcity

A common theme across our analysis is the scarcity and poor quality of available

data. Addressing this gap is paramount, as improved information can advance re-

search and enable local policymakers to design effective mitigation strategies. Agri-

cultural statistics are challenging to collect for smallholder and subsistence farm-

ing, which limits our understanding of impacts at the farm level. Information on

mining sites remains inadequate and poorly accessible [Maus and Werner, 2024],

especially for artisanal mines.25 Pollution data are essential to assess impacts,

25For artisanal mines in particular, data needs to be disseminated in a way that safeguards against
potential human rights abuses. Two examples for such data repositories are the International
Peace Information Service that collects data on artisanal mining in the Central African Republic,
Tanzania, Zimbabwe, and parts of the DRC, as well as the Revenue Development Foundation
that supports governments in managing their natural resources and collates data on mining sites
in several West African countries.
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but similarly scarce [Jones et al., 2024]. Where institutional capacities are lack-

ing, community-based water monitoring could serve as an inexpensive and effective

complement [Ruppen et al., 2021].

Remote sensing technologies play a crucial role, with considerable future potential

to further refine and extend new and existing data. For water pollution, satellite

imagery has already detected large spills or tailings dam failures [Rudorff et al., 2018,

Ruppen et al., 2023], and refined approaches may help identify heavy metal pollution

[Swain and Sahoo, 2017]. The monitoring of mines represents another application

[Maus et al., 2022] with considerable potential for automating laborious tasks. For

instance, Sepin et al. [2025] use machine learning methods to automatically map

the evolution of mining sites over time. Vegetation indices already provide valuable

proxies for agricultural productivity — future work could integrate high-quality

yield data into ready-made analytical products. Beyond satellite-based imaging,

unmanned aerial vehicles have developed rapidly, and can offer higher-resolution

data for monitoring critical locations.

Interventions

Policymakers can and should also address the external costs of mining today. Mining

concessions should explicitly recognize these externalities, and should factor in their

impacts on agriculture, which is vital for local economies and food security. Our

results provide concrete evidence for including water-mediated impacts in the allo-

cation of concessions. The formalization of artisanal mining, for example through

official titling, could increase miners’ incentives to invest in precautionary equip-

ment. This could reduce impacts at the source — with economic as well as health

benefits for humans and their environment.

Supranational interventions are essential in effectively addressing mining externali-

ties. These can help shift regulatory and monitoring burdens from mineral-producing

countries towards all that benefit from the extracted resources. For industrial mines,

the Global Industry Standard on Tailings Management (GISTM) presents an im-

portant first step for international governance. Our findings highlight that not only

catastrophic failures but also persistent water pollution requires attention. Sim-

ilarly, the Minamata Convention on Mercury targets mercury pollution, which is

still used in artisanal gold mining — the commodity we found to have the strongest
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downstream impact. Going forward, supply chain measures could also help reduce

the prevalence of minerals sourced in harmful ways.26

6. Conclusion

In this paper, we identified the causal effects of mining on agricultural productivity

mediated by water pollution. In a quasi-experimental research design, we used the

discontinuity from mine sites along a directed network of river basins for identifi-

cation. We compared differences in agricultural productivity, based on a remotely

sensed peak vegetation index, up- and downstream of mine locations. Our main spec-

ification revealed a reduction of peak vegetation 1.28–1.35% for general vegetation

and 1.38–1.47% for croplands immediately downstream of mines. This corresponds

to annual losses of 91,000 tons of cereals across 74,000 km2 of affected croplands.

Our results can be contextualized both quantitatively and in terms of policy. Cru-

cially, our estimates only reflect a specific part of the total external costs of mining

for agriculture. Our research design does not capture impacts that are not medi-

ated alongside rivers, such as air pollution or local labor markets. Furthermore,

our estimates of the water-mediated effect may be attenuated by our indirect mea-

surement of agricultural productivity. Despite these limitations, our findings inform

the discussion about resource extraction in Africa, particularly in regions with weak

environmental governance. The documented effects highlight the need for interven-

tions that reduce negative impacts of mining on water systems. Proper containment

facilities, for instance, should be required for industrial mining operations but also

for the informal mining sector, and especially in gold-mining regions, for which we

found particularly strong impacts. Enhanced monitoring of mines and surface water

quality is necessary to address data limitations we encountered, and provide a basis

to understand impacts and guide effective policies.

This study opens several promising avenues for future research. While the mine

dataset we use enables a comprehensive analysis across Africa, it lacks detailed in-

formation on individual mine characteristics. Future studies that incorporate data

on containment facilities, mine types, and pollutants produced would allow for more

26The European Union’s Deforestation Regulation (EUDR), which aims to prevent the conversion of
forests towards agricultural land, is a notable and recent example. It covers seven agricultural
commodities that are implicated in deforestation, and applies to companies that place these
products on the EU market.
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precise analyses of impacts. Similarly, spatial data on crop distributions could enable

detailed analyses of which crop types are most susceptible to mining-induced pol-

lution, and could help inform adaptation strategies. Different research approaches

might also address questions our design could not fully answer, such as disentangling

the impacts of industrial and artisanal mines or providing stronger evidence on how

effects decay with distance. Such research would further strengthen the evidence

base for targeted interventions that balance the economic benefits of mining with

its environmental and human costs.
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Smoliński. Environmental impact and damage categories caused by air pollu-

tion emissions from mining and quarrying sectors of European countries. Jour-

nal of Cleaner Production, 143:159–168, February 2017. ISSN 0959-6526. doi:

10.1016/j.jclepro.2016.12.136.

Weijie Miao, Xin Huang, and Yu Song. An economic assessment of the health

effects and crop yield losses caused by air pollution in mainland china. Journal of

Environmental Sciences, 56:102–113, June 2017. ISSN 1001-0742. doi: 10.1016/j.

jes.2016.08.024.

Bhanu Pandey, Madhoolika Agrawal, and Siddharth Singh. Assessment of air pol-

lution around coal mining area: Emphasizing on spatial distributions, seasonal

variations and heavy metals, using cluster and principal component analysis. At-

mospheric Pollution Research, 5(1):79–86, January 2014. ISSN 1309-1042. doi:

10.5094/APR.2014.010.

45

http://dx.doi.org/10.1016/j.soilbio.2018.01.028
http://dx.doi.org/10.1016/j.soilbio.2018.01.028
https://openknowledge.worldbank.org/server/api/core/bitstreams/78b9fa85-83e6-549b-9c2c-d33099c0bc50/content
https://openknowledge.worldbank.org/server/api/core/bitstreams/78b9fa85-83e6-549b-9c2c-d33099c0bc50/content


Mines → Rivers → Yields

David Wuepper, Haoyu Wang, Wolfram Schlenker, Meha Jain, and Robert Finger.

Institutions and global crop yields. NBER Working Paper, July 2023. doi: 10.

3386/w31426.

Rema Hanna and Paulina Oliva. The effect of pollution on labor supply: Evidence

from a natural experiment in Mexico City. Journal of Public Economics, 122:

68–79, 2015. ISSN 0047-2727. doi: 10.1016/j.jpubeco.2014.10.004.

Joshua Graff Zivin and Matthew Neidell. The impact of pollution on worker pro-

ductivity. American Economic Review, 102(7):3652–73, 2012. ISSN 0002-8282.

doi: 10.1257/aer.102.7.3652.

Janet Currie, Eric A. Hanushek, E. Megan Kahn, Matthew Neidell, and Steven G.

Rivkin. Does pollution increase school absences? Review of Economics and

Statistics, 91(4):682–694, 2009. ISSN 0034-6535. doi: 10.1162/rest.91.4.682.

Andreas Kotsadam and Anja Tolonen. African mining, gender, and local em-

ployment. World Development, 83:325–339, July 2016. ISSN 0305-750X. doi:

10.1016/j.worlddev.2016.01.007.

UNEP. Global industry standard on tailings management. Technical report,

United Nations Environment Programme, 2023. URL https://www.unep.org/

resources/report/global-industry-standard-tailings-management.
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A. Basins and Mines

Here, we describe the basin and mine datasets, and how we integrate them to create

our sample of interest.

A1. The HydroBASINS dataset

Our analysis uses river basins (watersheds) from the HydroBASINS dataset [Lehner

and Grill, 2013] as units of observation.27 This dataset divides all land mass on

earth into twelve levels of nested river basins, offering increasing granularity at each

level.

Hierarchical basin structure The hierarchy begins at the least granular Level 1,

where each continent forms a single basin. Level 2 divides continents into nine

similarly sized units, while Level 3 delineates major river systems. Each subsequent

level follows hydrological principles to create up to nine sub-basins within each

higher-level basin. This nesting continues through Level 12, our chosen level of

analysis, where basins across Africa average 124.4 km2 in area.

A1.1. Basin delineation

The delineation process begins with the smallest sub-basins, which are aggregated

into larger units. In the ideal case, this leads to a unitary Level 3 basin that contains

a large river system. This system consists of a main stream flowing from its source

to either the sea or an inland sink. Along its course, the main stream is joined

by multiple tributary streams. Each such confluence presents an opportunity to

delineate two distinct basins: one encompassing the tributaries’ catchment area,

and another for the main stream.

To maintain accuracy, while avoiding excessive fragmentation, the authors main-

tain thresholds before a confluence is used to delimit two basins:

• tributary streams must have a catchment area of (i.e., drain) at least 100 km2

to form their own tributary sub-basin,

• areas between qualifying tributary streams from inter-basins,

27We use the version of the dataset that specifically accounts for the position of lakes, delineating
lake-adjacent basins similarly to coastal basins.
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• if the catchment area of tributary streams or inter-basins exceeds 250 km2,

they are subdivided using artificial break points.

The resulting boundaries are hydrologically determined, and independent of political

borders, which facilitates our analysis.

Figure A1: Two forked upstream
(Level 12) basins join into a single (mine)
basin further downstream. The superim-
posed yellow lines indicate Level 8 basins;
these contain varying numbers of sub-basins
(due to a level-skipping mechanism), and
clearly divide tributary and main basins.
The blue lines, which represent river
streams, provide additional intuition for the
basin topology.

Basin aggregation and coding The dataset employs a modified version of the Pfaf-

stetter coding system [Verdin and Verdin, 1999] to aggregate basins into higher-level

units. Each super-basin contains a maximum of nine sub-basins: (a) four tributary

basins, and (b) five sections of the main stream (as defined by tributary confluences

or the artificial breaking points). The HydroBASINS dataset departs from the plain

Pfafstetter coding in two notable ways:

1. it allows level-skipping when basin areas at a given level deviate significantly

from their peers,

2. it permits super-basins to contain fewer than nine sub-basins.

An example of the level-skipping mechanism is visible in Figure A1. Additional

adjustments of the HydroBASINS dataset concern endorheic (closed) basins and

islands. Islands are grouped with their associated continents at Level 1 and then

manually grouped or separated at Levels 2 and 3. At subsequent levels, basins are

nested in an island-specific Pfafstetter chain. Endorheic basins are contained entirely
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within one super-basin, but do not drain into that larger basin. For consistency, these

basins are linked to main streams via virtual links that do not correspond to actual

flows. We sever these virtual links for our analysis.

A2. The mine dataset

Our information on mine locations comes from Maus et al. [2022], who developed

a comprehensive dataset of mining areas by expanding on the Metals and Minerals

database [S&P Global Market Intelligence, 2025]. While the SNL database contains

information on approximately 35,000 industrial mines globally, Maus et al. [2022]

enhanced this coverage with additional sources and visual inspection of satellite

imagery. Entries are generated by inspecting a 10 km buffer area around recorded

mine locations for signs of mining operations, which are then delineated. This means

that both active and abandoned industrial mines, as well as nearby artisanal and

small-scale mine sites, which often continue after industrial operations cease, are

covered. The resulting dataset contains 45,000 mine polygons across the globe,

around 5,000 of which are located in Africa. Their geographic distribution can be

seen in Figure A2.

A3. Integration of mine and basin data

The described datasets allow us to identify comparable areas that are affected and

unaffected by the stream impacts of mines. Specifically, we construct two chains of

basins in relation to each mine basin:

• Downstream basin chains: we follow the variable indicating the next basin until

the sea, a sink, or a distance threshold (ten basins in the main specification)

is reached.

• Upstream basin chains: we recursively track basins that reference the current

basin as the next one, until either an end or a threshold is reached.

As a result of this process, downstream chains follow a single path, while upstream

basins may fan out.28

28This is because river bifurcations are rare (and usually non-permanent), while confluences are
abundant. While theoretically possible, downstream bifurcations are ruled out by the Hy-
droBASINS dataset’s structure.
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Figure A2: Distribution of the mine polygons in Maus et al. [2022] (top-left). Illustration
of a mine that is entirely contained within one basin (top-right), mine clusters that reach
across multiple basins (bottom-left), and a number of interconnected and closely adjacent
basin chains (bottom-right).
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The mine basin Mine basins are assigned by intersecting the basins with the cen-

troids of the mine polygons by Maus et al. [2022]. Two examples are shown in

Figure A2, where mines are represented by a pink dot within white mine basins. On

the left panel, we can see that the basin contains both areas that are downstream of

the mine, indicated by the superimposed river stream, and ones that are upstream.

By contrast, the downstream (upstream) basins, marked in brown (blue), and up-

stream basins contain only areas that are (are not) affected by water flows passing

the mine.

A3.1. Treatment assignment

Mines are usually spatially clustered, and, as illustrated in the right panel of Fig-

ure A2, our dataset is no exception. This complicates the assignment of the treat-

ment (control) status based on the classification of up- and downstream basin chains,

since a single basin may appear in multiple chains. We apply the following rules:

• Basins that only appear in upstream chains are designated as upstream, i.e.,

control.

• Basins that appear in any downstream chain are designated as downstream,

i.e., treated.

This coding affects, for example, the two basins directly to the south of the large

mine in the right panel of Figure A2. Even though they are upstream of the larger

mine, we designate them as downstream basins because they are downstream of (and

thus affected by) a set of smaller mines south of the larger mine. They thus cannot

be treated as upstream, that is, unaffected by a mine.

The described treatment assignment hinges on the length of basin chains, which we

set at a maximum order of ten. A greater threshold would result in long downstream

chains that reach into the control areas of distant mines, while a smaller threshold

relies on the quick dissipation of impacts or runs the risk of contamination. An

illustration is provided in Figure A2, where the downstream chain, which originates

from the mine cluster in the southeastern (bottom-right) corner, reaches into the

upstream area of a group of mines at the center of the map.
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B. Mining, Water Pollution, and Vegetation

In this section, we investigate the mechanisms behind our estimated causal effect,

linking Mines–Rivers–Yields. We begin by reviewing the literature on how mining

affects water quality and plant growth. Then, we correlate our satellite-derived

productivity measure (the maximum annual EVI) with agricultural production data

in the region, allowing us to quantify economic impacts. Finally, we analyze water

quality measurements to provide direct evidence of pollution as the primary mediator

of mining’s effects on vegetation.

B1. Mine impacts on water quality and vegetation

Numerous studies document the degradation of water quality downstream of mining

operations. This pollution affects both surface water and groundwater, and has

significant implications for agriculture and ecosystem health.

For Zimbabwe’s Deka River, Ruppen et al. [2021] documented a water quality de-

cline downstream of mining discharge points, with manganese concentrations reach-

ing 70 times the safe limit and elevated levels of nickel, arsenic, and salinity. Sim-

ilarly, Duncan et al. [2018], Duncan [2020] found elevated concentrations of nickel,

chromium, cadmium, and lead in Ghana’s Pra and Fena rivers and their tributaries.

They identify illegal mining activities as a key source of these pollutants. In India,

Sahoo and Khaoash [2020] found that 15% of groundwater samples in the Brajraj-

nagar coal mining area were of poor quality, with 43% requiring special treatment

before agricultural use due to elevated heavy metal concentrations. In Brazil, San-

tana et al. [2020] identified toxic levels of cadmium, lead, and uranium in water,

while chromium, copper, nickel, and vanadium in sediments exceeded international

safety guidelines in the Jacaré and Contas rivers. Collectively, these studies confirm

mining as a major contributor to hazardous water pollution that affects both human

and agricultural systems.

B1.1. Water pollution and plant growth

Mining operations produce several forms of water pollution that impair plant growth

and development. These pollutants — primarily heavy metals, acidic drainage, and

dissolved salts — significantly reduce agricultural productivity through multiple

physiological pathways.
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Heavy metals Heavy metal contamination from mining represents a major threat

to plant health and crop yields, and acts by disrupting essential metabolic processes,

damaging cellular structures and the soil microbiome. Frossard et al. [2018] show

that mercury concentrations exceeding 2 mg/kg disrupt the soil microbiome, reduc-

ing nitrogen fixation and phosphorus solubilization by up to 20%. This disruption

correlates with approximately 25% yield losses in maize — a staple crop across much

of Africa. Similarly, lead concentrations above 50 mg/kg decrease chlorophyll con-

tent by approximately 15% and inhibit root development, resulting in maize yield

reductions of 30–35%. These effects are even more pronounced in leafy vegetables,

which show particularly rapid uptake of contaminants. The results of heavy metal

pollution include chlorosis, where leaves yellowing due to insufficient chlorophyll

production, and even cell death (necrosis).

Acid mine drainage Acid mine drainage represents one of the most severe forms of

water pollution from mining. When sulfide minerals in mine waste (such as pyrite)

are exposed to oxygen and water, they form sulfuric acid and dramatically lower

the pH level in affected watersheds. Extremophile microbes can contribute to this

process and can sustain it for decades or centuries [see, e.g. Nordstrom et al., 2000].

The acidification has profound effects on plant physiology and growth, and acts

by disrupting nutrient uptake of calcium and magnesium, reducing the availability

of nitrogen and phosphorus in soil, and increasing solubility of toxic metals like

aluminum and manganese. The impact on crop yields is substantial and varies by

crop type. Du et al. [2024] found an average yield reduction of 13.7% overall, with

more severe impacts on vegetables (33%), and significant effects on staple crops

like maize and wheat (18%). These yield losses result from reduced root growth,

impaired nutrient uptake, and cellular damage from the compounded toxicity of

heavy metals.

Salinity Water salinity, often measured through Electrical Conductivity (EC), rep-

resents another significant mining-related pollutant that affects plant growth and

crop yields [Russ et al., 2020]. Salinity stress impacts plants through osmotic effects

and nutrient imbalances [Parida and Das, 2005]. At the cellular level, high salin-

ity disrupts membrane integrity, inhibits enzyme activity, and compromises plants’

ability to detoxify. These physiological disruptions manifest as visible growth im-

pairments. Research shows that even a modest 1,000 µS/cm (microsiemens per cen-

vii



Mines → Rivers → Yields

timeter) increase in irrigation water EC can reduce biomass accumulation in maize

by approximately 2%. The effect intensifies at higher salinity levels — when salinity

increases from moderate (3,000 µS/cm) to high levels (6,000 µS/cm), maize grain

yields may decline by 33%. Some studies indicate potential yield losses exceeding

50% when EC values surpass 8,000 µS/cm [Zörb et al., 2019], with varying impacts

by crop type [Page et al., 2021].

B2. Vegetation indices and crop yields

To translate our satellite-derived vegetation measurements to meaningful agricul-

tural impacts, we correlated our outcome with downscaled crop production statistics

from the Advancing Research on Nutrition and Agriculture (AReNA) Demographic

and Health Surveys (DHS)-GIS Database of the International Food Policy Research

Institute [IFPRI, 2020]. This dataset contains information on yields and produc-

tion values for various crops at survey sites across 34 African countries, comprising

approximately 45,000 observations collected between 2001 and 2018.

We focused on three key metrics: (1) physical yield (kg/hectare), (2) total pro-

duction value (USD), and (3) financial yield (USD/hectare). For each DHS cluster,

we created 6.2 km radius disks (matching our average basin size) and extracted

the maximum annual EVI for the survey year. We then related the logarithm of

agricultural metrics (winsorized at the 1% level) to this EVI value to determine

semi-elasticities.

Table B1 reports these relationships. Our proxy of agricultural vegetation cor-

relates strongly with all agricultural production measures. A 0.1 unit increase in

maximum annual EVI is associated with: a 9.0% increase in cereal yields, a 5.6%

increase in the financial yield of cereal crops, a 24.9% increase in the value of cereal

production, a 9.6% increase in the financial yield of all crops, and a 34.0% increase

in the value of overall crop production.

B2.1. Impact of mining on agricultural production

Using these correlations, we can translate our estimated mining impacts on vegeta-

tion into quantifiable agricultural losses. Our analysis found a 0.0064–0.0068 unit

decrease in the maximum annual EVI on croplands for the three basins immediately

downstream of the mine basin (see Table 2), depending on the included set of co-

variates. Applying the correlations from Table B1, this EVI reduction implies: a
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Table B1: Maximum annual EVI and agricultural production

Outcome: ln(Crops, Value) ln(Crops, FY) ln(Cereals, Value) ln(Cereals, Yield) ln(Cereals, FY)
Model: (1) (2) (3) (4) (5)

Variables
Max. Cropland EVI 3.398∗∗∗ 0.9519∗∗∗ 2.489∗∗∗ 0.8995∗∗∗ 0.5589∗∗

(0.4230) (0.1828) (0.9150) (0.1586) (0.2704)

Fixed effects
Wave Yes Yes Yes Yes Yes

Fit statistics
Observations 44,682 44,380 44,682 44,682 44,171
R2 0.65336 0.35656 0.50120 0.60944 0.32956
Within R2 0.08225 0.00717 0.02177 0.02195 0.00153

Clustered (wave) standard-errors in parentheses Significance: ***: 0.01, **: 0.05, *: 0.1

0.57–0.61% decrease in cereal yields, a 0.36–0.38% decrease in the financial yield of

cereal crops, a 1.59–1.70% decrease in the value of cereal production, a 0.61–0.65%

decrease in the financial yield of all crops and a 2.16–2.31% decrease in the value of

overall crop production.

To estimate the aggregate economic impact, we calculate the total physical pro-

duction loss. The total cropland area in the first three downstream basins amounts

to slightly more than 74,000 km2 (or 7.4 million hectares). The winsorized (1%

level) AReNA DHS-GIS data suggests an average yield of 2,000 kg/hectare, roughly

falling in line with FAO values. Coupled with our estimate, we reach a total annual

production loss of 91,100 tons of cereal (2,000 kg/hectare × 0.006 reduction × 7.4

million hectares).

Next, we quantify the aggregate loss in financial terms. Average values for fi-

nancial yields from the winsorized (1% level) AReNA DHS-GIS dataset are around

(i) 1,200 USD/hectare for cereal crops and (ii) around 2,100 USD/hectare for over-

all crop production. Coupled with the average reductions in financial yields of

0.36–0.38% for cereal crops and 0.61–0.65% for overall crop production, and the

above area for crop cultivation, we estimate total financial losses at roughly 34 mil-

lion USD for cereal crops (1,200 USD/hectare × 0.0038 reduction × 7.4 million) and

roughly 102 million USD for overall crop production (2,100 USD/hectare × 0.0065

reduction × 7.4 million).

Importantly, these estimated losses occur annually, persist over time, do not re-

flect negative impacts of adaptation, only reflect water-mediated impacts on the

immediate vicinity of mines, and affect some of the most destitute regions of the
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world. Water pollution from mines can continue for decades after operations cease

[Macklin et al., 2023], and economic impacts accumulate over long periods.

B3. Water pollution measurements

To provide direct evidence for water pollution as the primary mechanism linking

mining to reduced agricultural productivity, we analyzed water quality measure-

ments from the United Nations Environment Programme [2025] database. This

dataset contains water samples voluntarily provided by countries and organizations

from their monitoring networks. We included all samples collected between 2016

and 2024 within our study region, though availability was limited to South Africa.29

Figure B3 presents six key water quality parameters measured in upstream, mine,

and downstream basins:

1. Calcium discharge (Ca-Dis) indicates increased mineral content in water.

2. Electrical conductivity (EC) measures salinity (dissolved salts and ions),

which inhibits plant growth.

3. Sodium discharge (Na-Dis) damages soil structure and impairs water up-

take.

4. pH measures water acidity or alkalinity.

5. Sodium adsorption ratio (SAR) indicates the potential for soil structure

deterioration.

6. Sulfate discharge (SO2−
4 ) can cause acidification and indicates mining-related

pollution.

The data provide compelling evidence of water pollution in mine basins and down-

stream areas compared to upstream sites. Approximately 50% of samples from mine

basins exceed the 750 µS/cm threshold for EC. Moreover, elevated median values

for electrical conductivity, calcium discharge, and sodium discharge in downstream

basins indicate that mining operations are driving an accumulation of dissolved salts.

Acidity levels (pH) remain relatively stable, although the elevated sodium absorp-

tion ratio (SAR) reveals a risk for developing sodic soil conditions, and higher sulfate

concentrations downstream may indicate mining-induced acidification.

29The availability of water quality data is a particular problem in Africa [Jones et al., 2024].
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Figure B3: Water quality indicators for up-, mine, and downstream basins.

pH (n=3481) SAR (n=2642) SO4−Dis (n=2670) [mg/l]

Ca−Dis (n=2728) [mg/l] EC (n=3432) [µS/cm] Na−Dis (n=2963) [mg/l]
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Notes: This figure presents key water quality parameters monitored across different basins
in South Africa between 2016-2024. Electrical conductivity (EC) estimates the overall dis-
solved ionic content and measures water’s salinity. Sulfate discharge (SO4-DIS) can turn
water acidic. The pH values reflect the water’s degree of acidity or alkalinity. The sodium
adsorption ratio (SAR) assesses the potential for sodium to affect soil structure during irri-
gation. Dashed red lines indicate levels that are potentially harmful for plant growth [Ayers
and Westcot, 1985].
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These water quality measurements, though limited in scope, align with our hy-

pothesis that water pollution is the primary mechanism through which mining op-

erations reduce agricultural productivity in downstream areas. Several limitations

persist, however: (a) measurements were only available from South Africa, covering

a particular portion of our study area, (b) direct measurements of critical heavy

metals (lead, mercury, arsenic, cadmium) were unavailable, (c) temporal granular-

ity is lacking, prohibiting in-depth analysis that accounts for seasonal patterns, (d)

measurements are inconsistent and were collected using various methods, poten-

tially limiting comparability. Despite these limitations, the available data support

our mechanism hypothesis and demonstrate a clear pattern of elevated pollution

levels in mine and downstream basins compared to upstream control areas.

C. Additional Results and Methods

In this section, we report additional results that complement our main analysis.

First, we explore alternative specifications for extrapolating mining impacts beyond

the immediate vicinity, using exponential-decay and linear-quadratic distance-based

models. Second, we describe our approach to adding commodity information to

our dataset. Lastly, we detail additional robustness checks, including our matching

approach, treatment randomization, and placebo outcomes.

C1. Distance-based specifications

Our main analysis uses the basin order to estimate mining impacts on vegetation.

Here, we complement this approach with distance-based specifications to help quan-

tify how impacts develop over the course of rivers.

C1.1. Exponential decay model

The transport of pollutants from mining operations via rivers is the primary trans-

mission channel to downstream basins. Hydrological studies indicate that over 90%

of pollutants from mining are sediment-associated and transported 10–100 kilome-

ters from their discharge point [see Macklin et al., 2023]. Theory and empirical

evidence [see, inter alia, references in Macklin et al., 2023] suggest that concentra-

tions decay non-linearly.
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We therefore employ an exponential decay model, described in the main text, to

characterize impact patterns over longer distances. Note, however, that our original

research design is focused on the immediate vicinity. At greater distances, up- and

downstream basins are no longer directly comparable as structural differences mount;

hence, estimates from this analysis cannot be interpreted as causal under the same

weak conditions as our main results.

Since the decay parameters δ, γ are not known a priori, we use a (Bayesian)

model-averaging approach to (i) estimate their values while (ii) conveying uncer-

tainty around them. We consider a grid of values between [0.001, 1] , accommodat-

ing rapid and slow decay patterns at either side of the cutoff. At the lower (higher)

bound, the exponential decay acts along meters (kilometer) of river distance. For

each combination j of decay parameters, we estimate the model(s) and compute the

Bayesian information criterion (BIC) to quantify model fit. We approximate poste-

rior probabilities for each model via p (δj , γj | D) = exp{−BICj/2}/
∑

j exp{−BICj/2}
[see e.g. Neath and Cavanaugh, 2012] and a prior. Instead of imposing a flat prior for

the decay parameters, we use a moderately informative on, with δj , γj ∼ Be (5.6, 1.4).

This implies that impacts decay quickly (at a mean value of 0.8), and represents a

conservative prior for our analysis. This procedure allows us to report posterior

means (corresponding to regularized maximum likelihood estimates) and use the

posterior distribution of parameters to express uncertainty around them.

Our results are available in the lower panel of Table E12, and reveal surpris-

ingly slow rates of decay. Initial impacts (at hypothetical zero distance) range from

−0.0060 to −0.0093, while the average decay parameters range from 0.035 to 0.002,

suggesting very slow rates of decay. A re-analysis with flat priors (mirroring maxi-

mum likelihood estimates) diverges towards a flat downstream indicator, with esti-

mates tending towards zero. Figure C4 visualizes the speed of decay along the river

network for the fully saturated specifications. Posterior means indicate that impacts

on vegetation halve at a distance of 281 km, while cropland impacts halve at 72 km.

This implies minimal decay over the sample, where non-mine basins lie at a mean

(median) river distance of 51.5 (45.8) km, with a maximum of 216 km. These impact

ranges reach beyond typical detection ranges of pollutants from hydrological studies

[see, e.g., Macklin et al., 2023].
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Figure C4: Impact decay over the river distance, assuming an exponential decay function.
The solid black line denotes the mean effect; the shaded area between the dotted (dashed)
lines denotes the 95% (80%) credible interval. The vertical lines denote the distance where
the average impact is reduced to 50% and 10%.

C1.2. Linear-quadratic distance specifications

In addition to the exponential decay model, we also employ polynomial specifications

using river distance in kilometers as the running variable. These specifications use

the following operationalization of the running distance:

F (x) =
(
|x|+ x2

)
× I (x < 0) + I (x = 0) +

(
1 + x+ x2

)
× I (x > 0) ,

where x denotes the river distance relative to the mine, and we consider polynomials

up to order two [avoiding issues discussed in Gelman and Imbens, 2019].

Overall, we detect a negative effect of being downstream to a mine across these

specifications. Results are reported in Table E12. The linear distance decay specifi-

cation indicates that downstream basins have a−0.0034 to−0.005 lower annual max-

imum EVI, though not all estimates are statistically significant. For the quadratic

specification, we find statistically significant effects across all models, with down-

stream coefficients ranging from −0.0050 to −0.0056 for the general vegetation EVI

and from −0.072 and −0.0077 for the cropland-specific EVI. All estimates are sig-

nificant at the 5% level. These magnitudes closely align with our main basin-order

specification for basins near the discontinuity.

Robustness of linear-quadratic distances We also investigate the robustness of

the linear-quadratic specifications, although we note that distance-based polynomi-

als poorly fit the impact of interest and should be interpreted with care. Most
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notably, this concerns the choice of bandwidth around the cutoff, which limits

the influence of distant observations and is natively addressed by our chosen or-

der and exponential specifications. Here, we follow the recent literature on inference

in regression-discontinuity designs with continuous running variables [see Cattaneo

et al., 2019]. We use a data-driven bandwidth selection procedure, a weighting

scheme for observations that are closer to the cutoff, and separately fitted local

polynomials for untreated and treated units [following Imbens and Kalyanaraman,

2012].30 We follow the set of practices as outlined by Cattaneo et al. [2019] and

employ a triangular kernel, which gives observations closer to the cutoff a greater

weight, and chose the bandwidth by minimizing the mean squared prediction error.

The results of this exercise are presented in Table E13. For the conventional

estimates, the optimal bandwidth ranges from 18.4 to 41.9 km across specifica-

tions. The bias-corrected estimates use wider bandwidths between 42.1 and 78.5 km.

These bandwidths align with hydrological studies showing elevated toxic pollutants

10–80 km downstream of mines.31 Despite the narrower bandwidths than for our

main specification, the estimated effects remain consistent. With full controls, the

local average treatment effects range from −0.0028 to −0.0061 for general vegeta-

tion and from −0.0045 to −0.0083 for cropland vegetation. These estimates remain

statistically significant after bias correction.

C2. Commodity type prediction

The environmental impacts of mining vary by the type of mineral being extracted, as

different commodities require distinct extraction processes, chemicals, and produce

different waste profiles. To investigate this heterogeneity, we developed a methodical

approach to extend our dataset with information on commodity types present.

First, we compiled commodity information for relevant mine sites from multiple

sources: the SNL Mines and Metals database, the Global Energy Monitor database,

data by the US Geological Survey [Padilla et al., 2021], and company reports [Jasan-

sky et al., 2023]. After collection, we standardize commodity classifications across

sources by harmonizing different naming conventions and variants of the same min-

30Note that our main specification includes observations up to the order 10. We implicitly employ
a uniform kernel (weighing all observations equally), but separately estimate local treatment
effects for treated and untreated units at each order.

31Macklin et al. [2023], e.g., find elevated levels of toxic pollutants like zinc, lead, and arsenic
between 10 and 80 km downstream of mines.
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erals. Then, we use Gaussian process regression with a Gaussian kernel to predict

commodity probabilities for mine sites based on their coordinates. This allows us

to predict the probabilities of different commodity types occurring at each mine

location in our dataset.

Figure D8 illustrates the predicted spatial distribution of four common commodi-

ties (gold, copper, coal, and diamonds) across our study area. While the visualiza-

tion shows broad patterns, the actual predictions operate at the much finer spatial

scale of our training data, allowing us to differentiate between neighboring mining

sites. However, commodities often co-occur and their environmental impacts may

interact in complex ways, we focus our heterogeneity analysis on these four ma-

jor commodities that we can isolate in mine basins. This allows us to investigate

commodity-specific effects in a straightforward way, leaving extensions to future

research.

C3. Further robustness checks

This section describes and details robustness checks conducted to validate our main

findings. We employed three approaches — matching methods to achieve covariate

balance, randomization of treatment assignment, and placebo outcome tests. These

checks strengthen confidence in the causal impacts of mining operations and reduced

vegetation health downstream.

C3.1. Balance and matching

The characteristics of river basins may differ systematically between upstream (con-

trol) and downstream (treatment) basins. Potential imbalances are likely related to

the nature of basins and river streams, with elevation and its correlates playing a

central role (see Appendix A for more details). Our research design is not inval-

idated by such imbalances, but would suffer from decreased precision and higher

dependence on exact model specifications. To counteract this, we use coarsened

exact matching [Iacus et al., 2012] to achieve covariate balance among groups in a

flexible non-parametric fashion.

We implement two matching strategies with increasing stringency. First, we

matched solely on elevation and slope — the characteristics that are most closely re-

lated to basin systems. The upper panels of Figure D11 show an imbalance of these

covariates in the unadjusted sample, which is purged by the matching procedure.
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Second, we expanded our matching criteria to include meteorological conditions

(rainfall and maximum temperature) and soil type. The lower panels of Figure D11

show that the pre-matching imbalances in temperature and rainfall were effectively

eliminated in the adjusted sample. Figure D12 shows negligible absolute standard-

ized mean differences, confirming the success of the matching procedure.

Using the weights derived from these matching procedure, we re-estimate the

treatment effect for the first three downstream basins. Results are reported in

Figure 6 and columns (7) and (8) of Table E10. Both matching approaches yield

estimates that are qualitatively similar to our main results, confirming the negative

effect of mining on vegetation health and agricultural productivity. The effects

were somewhat stronger when matching on the full set of covariates, though not

statistically different from our main results.

C3.2. Randomized treatment

To further validate our identification strategy, we conducted a randomization ex-

ercise by shuffling the treatment status of basins. We randomly reassigned the

downstream status of basins by changing the sign of the running variable, maintain-

ing the overall balance between upstream and downstream locations. We preserve

the status of the mine basin, which is not identified by our procedure and causally

interpreted by us.

Figure D10 presents results from 5,000 iterations of this randomization procedure.

For the first three downstream basins, the estimated coefficients are centered near

zero for both outcomes, with and without covariates. Our point estimates from the

main analysis, indicated by red crosses, fall well outside these randomized distribu-

tions. This randomization exercise suggests that our findings are not artifacts of

random variation but reflect genuine treatment effects.

C3.3. Placebo outcomes

In another validation exercise, we examined whether discontinuities exist at the mine

basin for variables that should not be directly affected by mining’s water-mediated

impacts. Figure D9 shows results from estimating our main specification using each

of the main covariates as an outcome variable.

Population and temperature show no statistically significant discontinuities at the

mine basin. Slope and elevation exhibit expected systematic trends moving from
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upstream to downstream areas (consistent with the nature of basins) but display

no apparent discontinuity at the mine location. Accessibility to cities follows a

U-shaped pattern, indicating that mines tend to be situated closer to population

centers, which is also reflected in the population spike for mine basins. None of

the covariates displays the distinctive pattern observed for vegetation in our main

analysis.

We also conduct this exercise with river distances as running variables, and find

similar results that are reported in Table E14. We find no statistically significant dis-

continuities for slope, temperature, precipitation, or accessibility. We find moderate

discontinuities for population, for which the estimate is only significant at the 10%

level, and for elevation. The former might suggest migration as a relevant type of

adaptation, while the latter is expected due to the nature of our basin-level dataset.

Coupled with the qualitatively unchanged estimates when accounting for these co-

variates (in various ways), this validation exercise soothes concerns of confounding

at the mine basin.
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D. Additional Figures

Figure D5: Maximum 2023 monthly temperature per basin in degrees Celsius (top-left), 2023 accumulated
precipitation per basin in millimeters (top-right), average elevation in meters per basin (bottom-left), and
average slope in degrees per basin (bottom-right). Basemap imagery provided by Esri, Maxar, Earthstar
Geographics, and the GIS User Community.
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Figure D6: Maximum 2023 EVI per basin after applying the CCI vegetation mask (left) and the CCI cropland
mask (right). Basemap imagery provided by Esri, Maxar, Earthstar Geographics, and the GIS User Community.
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Figure D7: Number of mine-basins with Y upstream and X downstream basins in the dataset.

Figure D8: Heatmap indicating the results of the commodity prediction and point locations of training data.
Note that the zoomed-out level of the heatmap averages over local nuances and does not accurately convey
results for individual mines.
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Figure D9: Order estimates when using elevation, slope, temperature, precipitation, accessibility to cities,
and population as placebo outcomes.
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Figure D10: Estimation results when the treatment status (i.e., whether basins are down- or upstream) is
randomized (5,000 runs, balance between statuses is kept). The red crosses indicate estimation results for the
main specification.
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Figure D11: Balance of elevation, slope, temperature, and precipitation before and after matching. (Soilgrids
not pictured.)

Precipitation

Temperature

SoilgridVertisols

SoilgridSolonetz

SoilgridSolonchaks

SoilgridRegosols

SoilgridPodzols

SoilgridPlinthosols

SoilgridPlanosols

SoilgridPhaeozems

SoilgridNo data

SoilgridNitisols

SoilgridLuvisols

SoilgridLixisols

SoilgridLeptosols

SoilgridKastanozems

SoilgridHistosols

SoilgridGleysols

SoilgridFluvisols

SoilgridFerralsols

SoilgridCambisols

SoilgridCalcisols

SoilgridArenosols

SoilgridAndosols

SoilgridAlisols

SoilgridAcrisols

Slope

Elevation

0.00 0.05 0.10 0.15 0.20
Absolute Standardized

Mean Difference

All
Matched

Figure D12: Standardized mean difference before and after matching.

xxiii



Mines → Rivers → Yields

E. Additional Tables

Table E2: Number and average distance (km) of basins by order.

Order Upstream Downstream
N Distance N Distance

0 (1900) (0.0) (1900) (0.0)
1 847 13.9 1162 11.1
2 781 24.5 882 22.0
3 722 35.0 743 32.7
4 698 44.9 643 43.3
5 653 55.3 578 54.0
6 576 66.3 512 64.3
7 562 75.8 458 74.1
8 522 86.5 416 84.4
9 494 95.8 382 95.0
10 452 104.2 351 104.7
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Table E3: Summary statistics split by status.

Upstream Basins
Variable Unit of Measurement NT Mean St. Dev. Min. Max.

Max. Vegetation EVI Index [−1, 1] 48,666 0.433 0.156 0.028 0.983
Mean Vegetation EVI Index [−1, 1] 48,666 0.285 0.114 0.016 0.578
Max. Cropland EVI Index [−1, 1] 41,820 0.465 0.136 0.070 0.978
Mean Cropland EVI Index [−1, 1] 41,820 0.300 0.104 0.030 0.601
Elevation Meters 48,666 862.441 472.216 10.526 3,059.727
Slope Degrees 48,666 2.321 2.272 0.086 20.913
Max. Temperature Degree Celsius 48,666 34.194 3.958 15.633 46.146
Precipitation Millimeter 48,666 923.300 588.526 5.744 3,625.230
Population Unit 48,666 7,018.943 29,066.720 0.000 1,396,921.000
Accessibility Minutes 48,666 176.564 194.345 3.474 2,197.584

Mine Basins
Variable Unit of Measurement NT Mean St. Dev. Min. Max.

Max. Vegetation EVI Index [−1, 1] 14,730 0.431 0.151 0.039 0.917
Mean Vegetation EVI Index [−1, 1] 14,730 0.281 0.112 0.034 0.563
Max. Cropland EVI Index [−1, 1] 13,089 0.468 0.129 0.072 0.917
Mean Cropland EVI Index [−1, 1] 13,089 0.299 0.103 0.059 0.568
Elevation Meters 14,730 873.544 527.752 10.217 3,047.148
Slope Degrees 14,730 2.325 2.195 0.018 20.456
Max. Temperature Degree Celsius 14,726 33.357 3.904 15.592 46.525
Precipitation Millimeter 14,730 919.593 594.956 0.640 4,204.642
Population Unit 14,730 21,797.630 78,642.490 0.000 1,244,492.000
Accessibility Minutes 14,706 117.981 124.096 1.739 1,271.511

Downstream Basins
Variable Unit of Measurement NT Mean St. Dev. Min. Max.

Max. Vegetation EVI Index [−1, 1] 47,180 0.422 0.153 0.016 0.993
Mean Vegetation EVI Index [−1, 1] 47,180 0.273 0.108 −0.021 0.559
Max. Cropland EVI Index [−1, 1] 38,127 0.461 0.130 −0.068 0.958
Mean Cropland EVI Index [−1, 1] 38,127 0.294 0.098 −0.104 0.597
Elevation Meters 47,172 760.527 468.287 −118.349 2,949.539
Slope Degrees 47,172 2.123 2.446 0.000 19.798
Max. Temperature Degree Celsius 47,180 34.709 3.875 16.590 48.845
Precipitation Millimeter 47,180 874.144 601.039 3.149 4,456.690
Population Unit 47,180 5,808.941 21,609.500 0.000 667,053.000
Accessibility Minutes 47,156 166.076 174.843 1.002 2,659.925
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E1. Main results

Table E4: Main estimation results, order specification.

Dependent Variables: Maximum Vegetation EVI Maximum Croplands EVI
Model: (1) (2) (3) (4) (5) (6) (7) (8)

Mine Basin -0.0049∗∗∗ -0.0053∗∗∗ -0.0048∗∗∗ -0.0046∗∗∗ -0.0068∗∗∗ -0.0073∗∗∗ -0.0070∗∗∗ -0.0064∗∗∗

(0.0014) (0.0014) (0.0014) (0.0014) (0.0022) (0.0022) (0.0022) (0.0022)
Downstream, 1 -0.0045∗∗∗ -0.0047∗∗∗ -0.0041∗∗ -0.0043∗∗ -0.0051∗∗ -0.0051∗∗ -0.0049∗∗ -0.0050∗∗

(0.0017) (0.0018) (0.0018) (0.0018) (0.0025) (0.0025) (0.0025) (0.0025)
Downstream, 2 -0.0049∗∗ -0.0048∗∗ -0.0045∗ -0.0048∗∗ -0.0058∗ -0.0061∗ -0.0064∗ -0.0067∗∗

(0.0022) (0.0024) (0.0024) (0.0024) (0.0031) (0.0032) (0.0032) (0.0032)
Downstream, 3 -0.0085∗∗∗ -0.0086∗∗∗ -0.0087∗∗∗ -0.0087∗∗∗ -0.0088∗∗ -0.0092∗∗ -0.0098∗∗ -0.0099∗∗∗

(0.0028) (0.0029) (0.0029) (0.0029) (0.0037) (0.0038) (0.0038) (0.0038)

Downstream, 4 -0.0049∗ -0.0057∗ -0.0061∗ -0.0062∗ -0.0029 -0.0034 -0.0042 -0.0044
(0.0030) (0.0032) (0.0033) (0.0033) (0.0038) (0.0039) (0.0039) (0.0040)

Downstream, 5 -0.0034 -0.0043 -0.0053 -0.0053 0.0007 0.0003 -0.0015 -0.0016
(0.0033) (0.0036) (0.0037) (0.0037) (0.0042) (0.0044) (0.0045) (0.0045)

Downstream, 6 -0.0027 -0.0040 -0.0057 -0.0061 -0.0004 -0.0010 -0.0035 -0.0038
(0.0034) (0.0039) (0.0040) (0.0040) (0.0046) (0.0051) (0.0052) (0.0052)

Downstream, 7 -0.0053 -0.0061 -0.0087∗∗ -0.0089∗∗ -0.0051 -0.0057 -0.0092∗ -0.0093∗

(0.0037) (0.0042) (0.0043) (0.0043) (0.0048) (0.0054) (0.0055) (0.0055)
Downstream, 8 -0.0095∗∗ -0.0115∗∗ -0.0141∗∗∗ -0.0144∗∗∗ -0.0047 -0.0056 -0.0085 -0.0088

(0.0041) (0.0045) (0.0046) (0.0046) (0.0053) (0.0059) (0.0060) (0.0060)
Downstream, 9 -0.0066 -0.0089∗ -0.0120∗∗ -0.0123∗∗ -0.0060 -0.0070 -0.0108∗ -0.0111∗

(0.0045) (0.0049) (0.0050) (0.0050) (0.0056) (0.0063) (0.0064) (0.0064)
Downstream, 10 -0.0063 -0.0083 -0.0118∗∗ -0.0120∗∗ -0.0023 -0.0030 -0.0071 -0.0074

(0.0049) (0.0053) (0.0054) (0.0054) (0.0060) (0.0068) (0.0069) (0.0069)

Elevation −1.36× 10−5∗∗ −5.04× 10−5∗∗∗ −5.04× 10−5∗∗∗ −9.82× 10−6 −4.93× 10−5∗∗∗ −4.93× 10−5∗∗∗

(6.33× 10−6) (6.85× 10−6) (6.85× 10−6) (7.7× 10−6) (7.88× 10−6) (7.9× 10−6)
Slope 0.0029∗∗∗ 0.0024∗∗∗ 0.0025∗∗∗ 0.0027∗∗∗ 0.0023∗∗∗ 0.0022∗∗∗

(0.0005) (0.0005) (0.0005) (0.0006) (0.0007) (0.0006)
Soil Type included Yes Yes Yes Yes Yes Yes
Yearly Max. Temperature -0.0064∗∗∗ -0.0064∗∗∗ -0.0066∗∗∗ -0.0067∗∗∗

(0.0006) (0.0006) (0.0007) (0.0007)
Yearly Precipitation 3.69× 10−5∗∗∗ 3.69× 10−5∗∗∗ 3.3× 10−5∗∗∗ 3.3× 10−5∗∗∗

(3.23× 10−6) (3.21× 10−6) (3.44× 10−6) (3.44× 10−6)
Accessibility in 2015 −1.44× 10−5∗∗ 1.12× 10−5

(7.17× 10−6) (1.76× 10−5)
Population in 2015 −7.78× 10−8∗∗∗ −6.85× 10−8∗∗∗

(1.93× 10−8) (2.33× 10−8)

Sample Mean (Order 1) 0.4259 0.4259 0.4259 0.4259 0.4647 0.4647 0.4647 0.4647
Relative Effect (Order 1) -1.056 -1.098 -0.9731 -1.008 -1.093 -1.098 -1.063 -1.066

Fixed-effects
Year Yes Yes Yes Yes Yes Yes Yes Yes
Mine Yes Yes Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 110,576 110,568 110,564 110,524 93,036 93,036 93,032 93,000
R2 0.90287 0.90457 0.90767 0.90788 0.81624 0.81763 0.82152 0.82179
Within R2 0.00175 0.01894 0.05094 0.05285 0.00216 0.00973 0.03121 0.03245

Clustered (mine basin) standard-errors in parentheses Significance: ***: 0.01, **: 0.05, *: 0.1

Note: Table shows results for estimation of Equation (1), with distance included as measured by the ordering of basins with
respect to the mine basin. Columns (1)–(4) hold results from models for the overall EVI as proxy measure for vegetative health
within basins, columns (5)–(8) for the cropland-specific EVI as proxy measure for agricultural productivity. Models in columns
(1) and (5) include no additional covariates, models (2) and (6) control for geophysical variables (elevation, slope, and soil),
models (3) and (7) additionally control for meteorological (yearly sum of precipitation and yearly maximum temperature), and
models (4) and (8) additionally control for socioeconomic (accessibility to city in minutes and total population in 2015)
conditions. All models include mine and year fixed effects. Standard errors are clustered at the mine basin system level.
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Table E5: Main estimation results, pooled order specification.

Dependent Variables: Maximum Vegetation EVI Maximum Croplands EVI
Model: (1) (2) (3) (4) (5) (6) (7) (8)

Mine Basin -0.0053∗∗∗ -0.0057∗∗∗ -0.0054∗∗∗ -0.0051∗∗∗ -0.0079∗∗∗ -0.0084∗∗∗ -0.0083∗∗∗ -0.0076∗∗∗

(0.0015) (0.0015) (0.0015) (0.0015) (0.0022) (0.0022) (0.0022) (0.0022)
Downstream, 1–3 -0.0057∗∗∗ -0.0057∗∗∗ -0.0054∗∗∗ -0.0056∗∗∗ -0.0064∗∗ -0.0065∗∗ -0.0067∗∗∗ -0.0068∗∗∗

(0.0018) (0.0020) (0.0020) (0.0020) (0.0025) (0.0026) (0.0026) (0.0026)

Elevation −1.31× 10−5∗∗ −4.97× 10−5∗∗∗ −4.97× 10−5∗∗∗ −9.24× 10−6 −4.86× 10−5∗∗∗ −4.85× 10−5∗∗∗

(6.26× 10−6) (6.78× 10−6) (6.79× 10−6) (7.63× 10−6) (7.8× 10−6) (7.81× 10−6)
Slope 0.0029∗∗∗ 0.0024∗∗∗ 0.0024∗∗∗ 0.0027∗∗∗ 0.0023∗∗∗ 0.0022∗∗∗

(0.0005) (0.0005) (0.0005) (0.0006) (0.0007) (0.0006)
Soil Type included Yes Yes Yes Yes Yes Yes
Yearly Max. Temperature -0.0064∗∗∗ -0.0064∗∗∗ -0.0066∗∗∗ -0.0067∗∗∗

(0.0006) (0.0006) (0.0007) (0.0007)
Yearly Precipitation 3.69× 10−5∗∗∗ 3.69× 10−5∗∗∗ 3.29× 10−5∗∗∗ 3.29× 10−5∗∗∗

(3.23× 10−6) (3.22× 10−6) (3.45× 10−6) (3.45× 10−6)
Accessibility in 2015 −1.45× 10−5∗∗ 1.12× 10−5

(7.12× 10−6) (1.75× 10−5)
Population in 2015 −7.8× 10−8∗∗∗ −6.89× 10−8∗∗∗

(1.93× 10−8) (2.33× 10−8)

Sample Mean (Order 1–3) 0.4234 0.4234 0.4234 0.4234 0.4623 0.4623 0.4623 0.4623
Relative Effect (Order 1–3) -1.348 -1.348 -1.283 -1.319 -1.378 -1.410 -1.447 -1.473

Fixed-effects
Year Yes Yes Yes Yes Yes Yes Yes Yes
Mine Yes Yes Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 110,576 110,568 110,564 110,524 93,036 93,036 93,032 93,000
R2 0.90286 0.90456 0.90765 0.90787 0.81622 0.81761 0.82150 0.82177
Within R2 0.00163 0.01882 0.05080 0.05272 0.00208 0.00964 0.03109 0.03234

Clustered (mine basin) standard-errors in parentheses Significance: ***: 0.01, **: 0.05, *: 0.1

Note: Table shows results for estimation of Equation (1), with distance included as measured by the ordering of basins with
respect to the mine basin and pooled for the first three basins immediately up- or downstream of the mine basin. Columns
(1)–(4) hold results from models for the overall EVI as proxy measure for vegetative health within basins, columns (5)–(8) for the
cropland-specific EVI as proxy measure for agricultural productivity. Models in columns (1) and (5) include no additional
covariates, models (2) and (6) control for geophysical variables (elevation, slope, and soil), models (3) and (7) additionally control
for meteorological (yearly sum of precipitation and yearly maximum temperature), and models (4) and (8) additionally control for
socioeconomic (accessibility to city in minutes and total population in 2015) conditions. All models include mine and year fixed
effects. Standard errors are clustered at the mine basin system level.
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E2. Heterogeneity analysis

Table E6: Estimation results for heterogeneity analysis: Mine characteristics

Mine Size > 0.5km2 > 1km2 > 2.5km2

Mine Growth > 0% > 10% > 25%
Mine Commodity Coal Copper Diamonds Gold

Model: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Maximum Vegetation EVI
Downstream, 1–3 -0.0056∗∗∗ -0.0062∗∗∗ -0.0069∗∗∗ -0.0073∗∗ -0.0051∗∗ -0.0048∗∗ -0.0040 -0.0052 -0.0078 -0.0074∗ -0.0080∗∗∗

(0.0020) (0.0024) (0.0026) (0.0033) (0.0022) (0.0023) (0.0024) (0.0060) (0.0055) (0.0045) (0.0030)

Fit statistics
Observations 110,524 55,627 43,787 28,265 74,180 69,644 60,396 9,096 6,496 14,596 29,087
R2 0.90787 0.91447 0.91335 0.91718 0.89661 0.89568 0.89697 0.77295 0.90098 0.93217 0.87340
Within R2 0.05272 0.05421 0.05831 0.06647 0.05456 0.05365 0.04939 0.10382 0.09247 0.11833 0.03965

Maximum Cropland EVI
Downstream, 1–3 -0.0068∗∗∗ -0.0046 -0.0064 -0.0035 -0.0074∗∗∗ -0.0059∗∗ -0.0066∗∗ 0.0095 0.0015 -0.0127 -0.0119∗∗∗

(0.0026) (0.0036) (0.0041) (0.0054) (0.0027) (0.0027) (0.0030) (0.0091) (0.0080) (0.0090) (0.0042)

Fit statistics
Observations 93,000 48,325 38,247 24,391 63,329 59,266 51,873 8,252 5,138 11,081 27,375
R2 0.82177 0.84026 0.84698 0.84604 0.79461 0.79109 0.79097 0.67233 0.83484 0.76409 0.82100
Within R2 0.03234 0.03432 0.03980 0.05264 0.03433 0.03215 0.03298 0.07971 0.07025 0.04274 0.04576

Fixed-effects
Year Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Mine Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Clustered (mine basin) standard-errors in parentheses Significance: ***: 0.01, **: 0.05, *: 0.1

Note: Table shows results for estimation of Equation (1), with distance included as measured by the ordering of basins with
respect to the mine basin, with the overall EVI as outcome in the upper panel and the cropland-specific EVI as outcome in the
lower panel. Model in column (1) reports results for the baseline specification, models in columns (2)–(4) for subsets of mine
basins with increasing total area of mined area, models in columns (5)–(7) for subsets of mine basins with increasing growth in
mined area in the period from 2017 to 2023 based on Sepin et al. [2025]. Models (8)–(11) report results for subsets of mines split
by the primary commodity mined within them, not considering by-products. All specifications include the full set of controls and
mine and year fixed effects. Standard errors are clustered at the mine basin system level.

Table E7: Estimation results for heterogeneity analysis: Spatial heterogeneity

Biome Deserts Forests Grasslands
Region N. & E. Africa S. Africa W. Africa
Crop Suitability High Medium Low
Model: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Maximum Vegetation EVI
Downstream, 1–3 -0.0056∗∗∗ 0.0020 -0.0105∗∗ -0.0055∗∗ -0.0059 -0.0020 -0.0097∗∗ -0.0066∗∗ -0.0044 -0.0022

(0.0020) (0.0041) (0.0048) (0.0023) (0.0061) (0.0025) (0.0039) (0.0028) (0.0030) (0.0043)

Fit statistics
Observations 110,524 16,988 16,838 76,698 10,104 71,481 28,939 39,232 47,088 24,204
R2 0.90787 0.85191 0.92357 0.82853 0.91358 0.89851 0.89497 0.77085 0.84687 0.87793
Within R2 0.05272 0.09738 0.07345 0.05223 0.09214 0.05905 0.03862 0.03421 0.06666 0.09580

Maximum Cropland EVI
Downstream, 1–3 -0.0068∗∗∗ 0.0159 -0.0088∗∗ -0.0072∗∗ -0.0038 -0.0014 -0.0115∗∗ -0.0088∗∗∗ -0.0046 0.0015

(0.0026) (0.0133) (0.0044) (0.0029) (0.0064) (0.0035) (0.0046) (0.0033) (0.0038) (0.0119)

Fit statistics
Observations 93,000 7,856 15,885 69,259 9,028 56,946 27,026 36,611 43,628 12,761
R2 0.82177 0.70207 0.91138 0.73855 0.89173 0.75552 0.82927 0.72121 0.80964 0.79248
Within R2 0.03234 0.08679 0.05972 0.03288 0.07170 0.03574 0.02975 0.02746 0.04722 0.05867

Fixed-effects
Year Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Mine Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Clustered (mine basin) standard-errors in parentheses Significance: ***: 0.01, **: 0.05, *: 0.1

Note: Table shows results for estimation of Equation (1), with distance included as measured by the ordering of basins with
respect to the mine basin, with the overall EVI as outcome in the upper panel and the cropland-specific EVI as outcome in the
lower panel. Model in column (1) reports results for the full sample, models in columns (2)–(4) for sample splits by primary
biome of mine basin system, and models in columns (5)–(7) for sample splits by regions based on the USDA crop classifications,
models in columns (8)–(11) for sample splits by crop suitability based on the GAEZ methodology. All specifications include the
full set of controls and mine and year fixed effects. Standard errors are clustered at the mine basin system level.
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E3. Robustness analysis

Table E8: Estimation results for alternative/additional controls

Dependent Variables: Maximum Vegetation EVI Maximum Cropland EVI
Model: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Variables
Downstream, 1–3 -0.0056∗∗∗ -0.0061∗∗∗ -0.0056∗∗∗ -0.0056∗∗∗ -0.0053∗∗∗ -0.0068∗∗∗ -0.0073∗∗∗ -0.0066∗∗ -0.0067∗∗∗ -0.0065∗∗

(0.0020) (0.0020) (0.0020) (0.0020) (0.0020) (0.0026) (0.0026) (0.0026) (0.0026) (0.0026)

Fixed-effects
Year Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Mine Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 110,524 110,528 96,702 110,524 110,524 93,000 93,004 81,324 93,000 93,000
R2 0.90787 0.90670 0.90691 0.90787 0.90806 0.82177 0.82060 0.82156 0.82182 0.82187
Within R2 0.05272 0.04056 0.05345 0.05272 0.05476 0.03234 0.02565 0.03443 0.03260 0.03287

Clustered (mine basin) standard-errors in parentheses Significance: ***: 0.01, **: 0.05, *: 0.1

Note: Table shows results for estimation of Equation (1), with distance included as measured by the ordering of basins with
respect to the mine basin and pooled for the first three basins immediately up- or downstream of the mine basin. Columns
(1)–(5) hold results from models for the vegetation EVI as proxy measure for vegetative health within basins, columns (6)–(10)
for the cropland-specific EVI as proxy measure for agricultural productivity. Models in columns (1) and (6) are the baseline
specification, models in columns (2) and (7) use alternative meteorological variables from the Climatic Research Unit Harris et al.
[2020] for precipitation and maximum temperature, models in columns (3) and (8) include an additional control for yearly average
concentrations of particulate matter with a diameter of 2.5µg within basins taken from Shen et al. [2024], models in columns (4)
and (9) include an additional control for violent events within basins taken from Raleigh et al. [2010], models in columns (5) and
(10) include an additional control for distance to coast. All specifications include the full set of controls and mine and year fixed
effects. Standard errors are clustered at the mine basin system level.

Table E9: Estimation results for varying outcome variables

Dependent Variables: Vegetation Croplands
Model: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Variables
Downstream, 1–3 -0.0056∗∗∗ -0.0057∗∗ -0.0048∗∗ -0.0046∗∗ -0.0032∗∗ -0.0068∗∗∗ -0.0058∗∗ -0.0053∗∗ -0.0058∗∗ -0.0037∗∗

(0.0020) (0.0023) (0.0020) (0.0021) (0.0013) (0.0026) (0.0028) (0.0027) (0.0028) (0.0016)

Fixed-effects
Year Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Mine Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 110,524 110,524 109,505 110,500 110,524 93,000 93,000 94,596 92,719 93,000
R2 0.90787 0.93543 0.90344 0.91885 0.95522 0.82177 0.86923 0.78699 0.82381 0.91360
Within R2 0.05272 0.08588 0.05400 0.06762 0.14092 0.03234 0.05135 0.03110 0.03510 0.08378

Clustered (mine basin) standard-errors in parentheses Significance: ***: 0.01, **: 0.05, *: 0.1

Note: Table shows results for estimation of Equation (1), with distance included as measured by the ordering of basins with
respect to the mine basin and pooled for the first three basins immediately up- or downstream of the mine basin. Columns
(1)–(5) hold results from models for vegetation-specific measures as proxy measure for vegetative health within basins, columns
(6)–(10) for cropland-specific ones as proxy measure for agricultural productivity. Models in columns (1) and (5) are the baseline
specification for the overall maximum EVI and the cropland-specific maximum EVI, respectively. Models in columns (2) and (7)
use the respective NDVI instead of the EVI, models in columns (3) and (8) report results for a narrower version of the vegetation
mask by ESA [Defourny et al., 2024] and a cropland mask by Digital Earth Africa [2022], respectively. Models in columns (4) and
(9) use the average of the pixel-specific annual maximum EVI per basin, models in columns (5) and (10) use the yearly mean of
the EVI as outcome instead of the maximum. All specifications include the full set of controls and mine and year fixed effects.
Standard errors are clustered at the mine basin system level.
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Table E10: Estimation results for varying sample definition

Model: (1) (2) (3) (4) (5) (6) (7) (8)

Maximum Vegetation EVI
Downstream, 1–3 -0.0056∗∗∗ -0.0061∗∗∗ -0.0061∗∗∗ -0.0043∗ -0.0045∗∗ -0.0055∗∗ -0.0046∗ -0.0071∗∗∗

(0.0020) (0.0020) (0.0021) (0.0022) (0.0023) (0.0023) (0.0024) (0.0024)

Fit statistics
Observations 110,524 69,107 41,449 58,545 95,822 8,152 94,902 72,009
R2 0.90787 0.91075 0.92199 0.89783 0.90765 0.92270 0.90891 0.90252
Within R2 0.05272 0.04812 0.04801 0.05360 0.05214 0.06617 0.05269 0.05244

Maximum Cropland EVI
Downstream, 1–3 -0.0068∗∗∗ -0.0071∗∗∗ -0.0068∗∗ -0.0067∗∗ -0.0067∗∗ -0.0071∗∗ -0.0067∗∗ -0.0092∗∗∗

(0.0026) (0.0027) (0.0027) (0.0029) (0.0029) (0.0034) (0.0030) (0.0032)

Fit statistics
Observations 93,000 58,288 34,883 49,798 79,931 6,967 79,123 60,357
R2 0.82177 0.82521 0.83763 0.80996 0.82360 0.86559 0.82186 0.81508
Within R2 0.03234 0.02663 0.02700 0.03324 0.03211 0.06258 0.03282 0.03575

Fixed-effects
Year Yes Yes Yes Yes Yes Yes Yes Yes
Mine Yes Yes Yes Yes Yes Yes Yes Yes

Clustered (mine basin) standard-errors in parentheses Significance: ***: 0.01, **: 0.05, *: 0.1
Note: Table shows results for estimation of Equation (1), with distance included as measured by the ordering of basins with
respect to the mine basin and pooled for the first three basins immediately up- or downstream of the mine basin. The upper
panel holds results from models for the vegetation-specific EVI as proxy measure for vegetative health within basins, the lower
panel for the cropland-specific EVI as proxy measure for agricultural productivity. Models in column (1) are the baseline
specifications, models in columns (2) restrict the sample to data from 2019 and onwards, models in column (3) restrict the sample
to data from the period 2018 to 2020. Models in column (4) only include basin systems with at least one up- and downstream
basin, models in column (5) exclude the mine basin itself, models in column (6) include only basins of order ±1 of mine-basin
systems with at least one up- and downstream basin and exclude the mine-basin. Models in columns (7) and (8) report results
from matching procedures. Models in column (7) matches on geophysical variables (elevation, slope, and soil), models in column
(8) in addition matches on meteorological variables (precipitation and maximum temperature) and soil type. All specifications
include the full set of controls and mine and year fixed effects. Standard errors are clustered at the mine basin system level.
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Table E11: Estimation results for varying fixed effects

Dependent Variables: Maximum Vegetation EVI Maximum Cropland EVI
Model: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Variables
Downstream, 1–3 -0.0056∗∗∗ -0.0062∗∗∗ -0.0062∗∗∗ -0.0057∗∗∗ -0.0056∗∗∗ -0.0068∗∗∗ -0.0059∗∗ -0.0071∗∗∗ -0.0067∗∗∗ -0.0067∗∗∗

(0.0020) (0.0018) (0.0017) (0.0020) (0.0020) (0.0026) (0.0024) (0.0022) (0.0026) (0.0026)

Fixed-effects
Year Yes Yes Yes Yes Yes Yes Yes Yes
Mine Yes Yes Yes Yes Yes Yes
Pfafstetter basin level 8 Yes Yes
Pfafstetter basin level 6 Yes Yes
Country-by-year Yes Yes
Mine-specific time trends Yes Yes

Fit statistics
Observations 110,524 110,524 110,524 110,524 110,524 93,000 93,000 93,000 93,000 93,000
R2 0.90787 0.90277 0.88482 0.91812 0.91341 0.82177 0.80802 0.78259 0.83552 0.82970
Within R2 0.05272 0.05884 0.06696 0.03154 0.10975 0.03234 0.03504 0.05020 0.01668 0.07542

Clustered (mine basin) standard-errors in parentheses Significance: ***: 0.01, **: 0.05, *: 0.1

Note:Table shows results for estimation of Equation (1), with distance included as measured by the ordering of basins with
respect to the mine basin and pooled for the first three basins immediately up- or downstream of the mine basin. Columns
(1)–(5) hold results from models for the vegetation-specific EVI as proxy measure for vegetative health within basins, columns
(6)–(10) for the cropland-specific EVI as proxy measure for agricultural productivity. Models in columns (1) and (6) are the
baseline specification with mine fixed effects. Models in columns (2) and (7) use fixed effects at Pfafstetter level 8 basins, models
in columns (3) and (8) fixed effects at Pfafstetter level 6 basins. Models in columns (4) and (9) report results using
country-by-year fixed effects, models in columns (5) and (10) report results including mine-specific linear time trends. All
specifications include the full set of controls. Standard errors are clustered at the mine basin system level.
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E4. Distance-based specifications

Table E12: Main estimation results specification using distance as running variable.

Dependent Variables: Maximum Vegetation EVI Maximum Croplands EVI
Model: (1) (2) (3) (4) (5) (6) (7) (8)

Linear distance

Downstream -0.0050∗∗ -0.0045∗∗ -0.0033 -0.0034 -0.0050∗ -0.0049∗ -0.0041 -0.0042
(0.0023) (0.0022) (0.0022) (0.0022) (0.0029) (0.0029) (0.0029) (0.0029)

Downstream × Distance −7.57× 10−6 −3.59× 10−5 −8.32× 10−5 −8.47× 10−5 1.47× 10−5 −4.19× 10−6 −5.85× 10−5 −5.96× 10−5

(4.69× 10−5) (5.36× 10−5) (5.38× 10−5) (5.32× 10−5) (5.85× 10−5) (6.91× 10−5) (6.96× 10−5) (6.94× 10−5)
Distance 7.75× 10−6 3.26× 10−5 5.61× 10−5 6.18× 10−5 2.75× 10−5 4.08× 10−5 6.32× 10−5 5.66× 10−5

(3.91× 10−5) (4.13× 10−5) (4.12× 10−5) (4.04× 10−5) (4.97× 10−5) (5.45× 10−5) (5.45× 10−5) (5.3× 10−5)

Fit statistics
Observations 110,576 110,568 110,564 110,524 93,036 93,036 93,032 93,000
R2 0.90282 0.90452 0.90762 0.90783 0.81609 0.81748 0.82138 0.82165

Linear-quadratic distance

Downstream -0.0056∗∗ -0.0055∗∗ -0.0050∗∗ -0.0052∗∗ -0.0077∗∗ -0.0076∗∗ -0.0072∗∗ -0.0073∗∗

(0.0027) (0.0026) (0.0025) (0.0025) (0.0035) (0.0036) (0.0035) (0.0035)
Downstream × Distance 2.64× 10−5 2.01× 10−5 5.75× 10−6 5.45× 10−6 0.0002 0.0001 0.0001 0.0001

(0.0001) (0.0001) (0.0001) (0.0001) (0.0002) (0.0002) (0.0002) (0.0002)
Downstream × Distance2 −3.04× 10−7 −4.7× 10−7 −7.27× 10−7 −7.35× 10−7 −1.2× 10−6 −1.17× 10−6 −1.38× 10−6 −1.36× 10−6

(8.52× 10−7) (8× 10−7) (8.09× 10−7) (7.99× 10−7) (1.2× 10−6) (1.2× 10−6) (1.18× 10−6) (1.18× 10−6)
Distance 3.97× 10−5 3.93× 10−5 3.33× 10−5 3.64× 10−5 −4.23× 10−6 1.24× 10−6 1.17× 10−5 −1.21× 10−6

(9.08× 10−5) (8.61× 10−5) (8.93× 10−5) (8.63× 10−5) (0.0001) (0.0001) (0.0001) (0.0001)
Distance2 −2.43× 10−7 −5.04× 10−8 1.76× 10−7 1.97× 10−7 2.55× 10−7 3.18× 10−7 4.13× 10−7 4.64× 10−7

(6.32× 10−7) (5.85× 10−7) (6.05× 10−7) (5.91× 10−7) (9.26× 10−7) (9.37× 10−7) (9.11× 10−7) (9.2× 10−7)

Fit statistics
Observations 110,576 110,568 110,564 110,524 93,036 93,036 93,032 93,000
R2 0.90283 0.90453 0.90762 0.90784 0.81612 0.81751 0.82142 0.82168

Exponential decay δ = 0.005 δ = 0.006 δ = 0.002 δ = 0.002 δ = 0.035 δ = 0.035 δ = 0.020 δ = 0.010

exp−δ ×Distance × Downstream -0.0062∗∗∗ -0.0062∗∗∗ -0.0060∗∗∗ -0.0062∗∗∗ -0.0093∗∗∗ -0.0091∗∗∗ -0.0074∗∗ -0.0068∗∗

(0.0023) (0.0023) (0.0023) (0.0023) (0.0034) (0.0033) (0.0029) (0.0029)

Fit statistics
Observations 110,576 110,568 110,564 110,524 93,036 93,036 93,032 93,000
R2 0.901147 0.902842 0.905958 0.906169 0.812592 0.813949 0.817862 0.818141

Fixed-effects
Year Yes Yes Yes Yes Yes Yes Yes Yes
Mine Yes Yes Yes Yes Yes Yes Yes Yes

Clustered (mine basin) standard-errors in parentheses Significance: ***: 0.01, **: 0.05, *: 0.1

Note: Table shows results for estimation of Equation (1), with distance included as measured in kilometer along the river
network. Columns (1)–(4) hold results from models for the overall EVI as proxy measure for vegetative health within basins,
columns (5)–(8) for the cropland-specific EVI as proxy measure for agricultural productivity. Models in columns (1) and (5)
include no additional covariates, models (2) and (6) control for geophysical variables (elevation, slope, and soil), models (3) and
(7) additionally control for meteorological (yearly sum of precipitation and yearly maximum temperature), and models (4) and
(8) additionally control for socioeconomic (accessibility to city in minutes and total population in 2015) conditions. All models
include mine and year fixed effects. Standard errors are clustered at the mine basin system level.
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Table E13: Distance specification using automatic bandwith selection

Max EVI Max C EVI

No Controls

Conventional -0.0048*** -0.0081*** -0.0088*** -0.0118***

(0.0017) (0.0021) (0.0024) (0.0027)

Bias-Corrected -0.0055*** -0.0086*** -0.0098*** -0.0120***

(0.0017) (0.0021) (0.0024) (0.0027)

Observations 33063 50360 30239 51370

Bandwidth (conv) 18.4 33.2 19.6 41.9

Bandwidth (bias) 42.1 67.5 47.3 78.5

With full Controls

Conventional -0.0028* -0.0055*** -0.0045* -0.0075**

(0.0017) (0.0021) (0.0023) (0.0031)

Bias-Corrected -0.0034** -0.0061*** -0.0054** -0.0083***

(0.0017) (0.0021) (0.0023) (0.0031)

Observations 34107 49372 29437 43370

Bandwidth (conv) 19 32.3 19 33.1

Bandwidth (bias) 42.6 65.6 44 65.4

Settings

Kernel Triangular Triangular Triangular Triangular

BW Criterion mserd mserd mserd mserd

Polynomial Linear Quadratic Linear Quadratic

Clustered (Mine) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: Table shows results for estimation of Equation (1), with distance
as measured in kilometer along the river network used as the running
variable, using practices suggested in Cattaneo et al. [2019] for automatic
bandwidth selection using a triangular Kernel and the mean squared
error distance as selection criterion, and bias correction. Models in the
upper panel include no covariates, models in the lower panel include
the full set of controls. Models in columns (1) and (2) report results
using the overall EVI as outcome, models in columns (3) and (4) for the
cropland-specific EVI. Models (1) and (3) fit a linear polynomial of the
distance measure at each side of the cutoff, models in columns (2) and
(4) a quadratic polynomial. All specifications include mine and year
fixed effects. Standard errors are clustered at the mine basin system
level.
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Table E14: Estimation results using covariates as placebo outcomes for squared distance specification

Dependent Variables: Slope Elevation Temperature Precipitation Accessibility Population
Model: (1) (2) (3) (4) (5) (6)

Variables
Downstream -0.009 -23.4∗∗∗ 0.067 1.39 -3.63 -2,838.9∗

(0.095) (7.08) (0.047) (10.7) (6.90) (1,622.7)
Distance × Downstream 0.020∗∗∗ -3.12∗∗∗ -0.003 -0.068 -0.103 21.8

(0.004) (0.368) (0.003) (0.635) (0.385) (54.1)
Distance2 × Downstream −4.79× 10−5 -0.001 −1.36× 10−6 0.004 0.0003 -0.135

(3.8× 10−5) (0.003) (2.17× 10−5) (0.005) (0.003) (0.339)
Distance -0.011∗∗∗ 1.70∗∗∗ 0.002 0.400 0.850∗∗∗ -72.6

(0.003) (0.290) (0.002) (0.575) (0.275) (44.4)
Distance2 1.07× 10−5 0.0008 −3.44× 10−6 -0.004 -0.001 0.438

(2.91× 10−5) (0.002) (1.85× 10−5) (0.005) (0.002) (0.277)

Fixed-effects
Year Yes Yes Yes Yes Yes Yes
Mine Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 114,508 114,508 114,508 114,508 114,508 114,508
R2 0.75464 0.97225 0.95948 0.94458 0.88907 0.59487
Within R2 0.19301 0.63133 0.40933 0.08597 0.05976 0.01816

Clustered (mine basin) standard-errors in parentheses Significance: ***: 0.01, **: 0.05, *: 0.1
Note: Table shows results for estimation of Equation (1), with distance included as measured by the ordering of basins with
respect to the mine basin using the additionally used covariates as placebo outcomes for the full sample. All specifications control
for the remaining covariates except the one used as placebo outcome, as well as mine and year fixed effects. Standard errors are
clustered at the mine basin system level.
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