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ABSTRACT

Mining provides crucial materials for the global economy and the climate transition, but can have severe
environmental and social impacts. Current analyses of these impacts are limited by a lack of data on
mining activity, particularly in the regions most affected. In this paper, we present a novel panel dataset
mapping mining sites along the tropical belt from 2016 to 2024. Our approach uses a machine learning
model, trained on over 25,000 mining polygons from the literature, to automatically segment mining areas
in high-resolution (< 5 m) satellite imagery. The dataset maps over 145,000 mining polygons covering an
average area of 65,000 km2 annually, with an accuracy of 87.7% and precision of 84.1%. Our approach
allows for accurate, precise, and consistent delineation, and can be scaled to new locations and periods.
The dataset enables detailed analyses of local environmental, social, and economic impacts of mining in
regions where conventional data is scarce or incomplete.

Transition minerals play a crucial role in climate action, and are necessary for the switch towards
cleaner production, storage, and distribution of energy.1 Globally, mining operations are expanding to meet
the growing demand for raw materials, often encroaching upon vulnerable regions.2 Projections suggest
that this expansion will accelerate drastically in pursuit of the Paris Agreement and subsequent climate
conferences.3 Yearly extraction of critical minerals is projected to increase by 150–450% depending on
the mineral, with a cumulative total of material extracted reaching 1.8–3.5 billion tons by 2050.4

Understanding the impacts of increasing mineral extraction is crucial, but relies on comprehensive
data that is often lacking. On the one hand, mining is linked to several adverse environmental and
social effects, including deforestation, loss of biodiversity, soil erosion, water pollution, air contamination,
corruption, and violent conflicts.5–14 On the other hand, mining can present economic opportunities, having
been shown to increase wealth levels, asset ownership, and incomes as well as related socioeconomic
indicators,15–18 although the effects on local and regional development are ambiguous,19–22 and may
vary by mineral type and target market.23 Yet, if managed successfully, the demand for minerals could
positively affect economic development and help facilitate the delivery of the sustainable development
goals (SDGs).24

The effective management of mining impacts necessitates detailed information on the location, areal
extent, and activity over time. Despite previous efforts,25–29 information on the status and especially the
development of mining over time remains scarce,30 and comprehensive analyses are impeded.

In this paper, we introduce a panel dataset of mining areas within the tropical belt. The dataset spans
from 2016 to 2024, and consists of mining polygons that are automatically delineated using state-of-the-art
machine learning (ML) methods. Our methodology employs a transformer-based segmentation model,31

trained on an extensive dataset of mining polygons from the existing literature.26, 28 We apply this model
to delineate polygons of known mine sites using frequent, high-resolution satellite imagery from Planet,
which is provided under Norways International Climate and Forest Initiative (NICFI).

This approach provides a comprehensive dataset of mining polygons, which tracks yearly footprint
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changes of previously identified mining sites. This data enables large-scale analyses of the various impacts
of mineral extraction — particularly in regions where such data has historically been scarce. The nature of
our approach allows for consistent and accurate predictions that can be easily extended across different
locations and temporal ranges.

Results and Discussion
Our dataset covers mining sites in the tropical belt and tracks them at annual frequency from 2016 until
2024. Mining sites and their development over time are captured by a total of over 147,000 mining
polygons that cover an average area of 66,400 km2 over the observed period. Figure 1 illustrates the spatial
coverage of the dataset, and presents the change in the area of monitored mining sites.
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Figure 1. Change in delineated mining areas over 2016–2024. Colored regions indicate the coverage of
our dataset (i.e., the tropical belt), while (non-white) pixels indicate the change in the area of tracked
mining sites (km2).

In this section, we describe insights that can be obtained from our dataset as well as benefits from
our modeling approach, and discuss their usage, limitations, and areas for future work. We begin by
focusing on the temporal dimension of our dataset, which allows researchers to track mining sites and their
impacts over time. We illustrate how this information can be used to monitor the activity, expansion, and
— potentially — renaturalization of individual mining sites. Afterwards, we explore the development of
mining areas at aggregated levels. Then, we focus on our modelling approach. Segmentation models can
distill a consensus from heterogeneous training data, generating consistent polygons, and lower the cost of
delineating polygons considerably. Finally, we discuss the limitations of this study and the introduced
dataset, as well as directions for future research.

Tracking a mine site
Figure 2 shows the development of the Toka Tindung mining site from 2016 to 2024 based on annual
satellite imagery as well as the corresponding annual model delineations. The mining site is located in
the Indonesian province of North Sulawesi, approximately 35 kilometers east of the provincial capital,
Manado. Commercial production began in 2011, and production and processing capacity have been added
since, making Toka Tindung one of the largest gold mining operations in Southeast Asia today. Over the
period from 2016–2024, multiple upgrades of the processing plant more than quadrupled the project’s
throughput capacity to four million tons per year.32

The increase in capacity is clearly reflected in Figure 2, and captured by our predictions. The expansion
of the main pits of Toka Tindung has been accompanied by the addition of infrastructure, such as water
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Figure 2. Annual predictions (2016–2024) of the extent of the Toka Tindung gold mining project in
Indonesia (1°35’N 125°06’E) are plotted over the corresponding annual satellite image (Planet/NICFI).
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storage facilities. Over 2016–2024, the Toka pit in the north and the Kopra, Blambangan, and Araren pits
in the south have expanded and grown closer to each other and expanded considerably. Later developments
were concentrated in the southern parts of the mine site, including the Araren pit in the bottom-right of the
images.

In the existing mining polygon datasets that we use to train our model,26, 28 none of these developments
are reflected (see Figure S2 of the Supplementary Information for a visualization). The southern pits are
missing from one of the sources,26 indicating the use of satellite imagery from before 2019. The other
source28 delineates these elements individually, resulting in five polygons. By contrast, our predictions
generally result in one large polygon, stemming from the broad nature of the ground truth used for training.
Overall, our mining polygons consistently trace the expansion of Toka Tindung, better reflecting its actual
state in a given year.

Changes of mining sites over time
Mining is prevalent throughout the tropics, but is well known to be highly clustered in a few areas.26, 28

Similarly, it is well known that mineral extraction is booming,4 but less is known about the changing
footprint of mining areas. Below, we first show how our dataset reveals substantial changes in the location
and extent of mining clusters in the period from 2016–2024. Then, we use the dataset to assess the
development of mining sites over time.

Changing footprint of mining hotspots
In Latin America, Brazil and Chile feature the largest, and rapidly growing, areal footprints of mining sites
(see Table 1). As visible in Figure 1, the Amazon rainforest has been a particular hotspot for increasing
footprints; especially along the Brazilian ‘arc of deforestation’ at the southern and eastern edges of
the Amazon, and its northern edges, including the border region between Guyana and Venezuela, and
Suriname. Traditional mining regions along the Chilean Andes show alternating patches of increases and
decreases in the size of mining sites. Other countries in the Americas, such as Colombia and Mexico,
show considerable, but more dispersed, growth in the footprint of mining sites.

Country
Mining Area (km2)

Indonesia 13,266 12,425 12,376 13,761 15,281 16,859 15,746 17,497 17,801
Brazil 7,829 8,785 8,002 8,023 8,548 8,215 9,764 9,342 9,360
Chile 6,293 5,748 5,746 7,161 7,269 6,434 7,561 7,176 7,218
South Africa 7,469 6,624 5,901 6,706 6,324 6,044 6,434 6,459 6,558
India 3,502 3,800 3,590 4,140 4,136 3,959 4,322 4,367 4,114

Table 1. Mining polygon area in the five countries with the largest mining footprint in the dataset over
time. A complete version with all countries with a footprint of over 100 km2 in the dataset is available as
Table S1 in the Supplementary Information.

In the western parts of Africa, pronounced growth of areal footprints can be observed in traditional
gold mining areas. Ghana is a primary hotspot, but mining sites in eastern Guinea, Sierra Leone, and
Burkina Faso have also expanded consistently throughout the observation period. In the south, mining
sites have expanded overall, but there has been a slight shift from sites in South Africa, where the overall
mining polygon area has been stagnant, to Namibia, Zimbabwe, and Botswana. The Congo river basin,
where mining operations have expanded rapidly,33 is only partially captured by our dataset. Mining sites
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in the south are covered and growing strongly, while the often smaller and informal mining sites in the rest
of the country are poorly covered by our sources and, hence, dataset.

In Asia, the islands of Borneo and Sulawesi in Indonesia, eastern India, and northern Myanmar
are particular hotspots for growing mining sites. Other areas such as northern Thailand, Laos, and the
Philippines also show expansion of mining areas, albeit at a more moderate pace. In contrast, parts of
the Malay peninsula, southern Myanmar, and southern India show a declining aerial extent of mining
operations over the observation period.

Trends in the area of mining sites
Mineral extraction is expanding globally,4 and Figure 3 shows how this coincides with increasing total
area and number of mining polygons in our covered locations. Focusing on the period from 2017 to 2023,1

the total area of mining polygons has increased by roughly 24% in the tropics, extending over about 74,100
km2 in 2023. In this period, the number of unique mining polygons in covered locations also increased by
23% to slightly more than 19,000 in the year 2023, while their average size remained stagnant.
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Figure 3. Summary of the predictions for the full dataset, and separated into regions — the Americas,
Africa, and Asia and Oceania. The left panel shows the increase in area (in 10,000 km2), the center panel
the number of individual mining polygons (in thousands), and the right panel shows the average size of
these mining polygons (in km2). The cross (×) indicates values for the ground truth.

These dynamics are similar on the regional level.2 The largest absolute increase in mining polygon
area in covered sites occurred in Asia and Oceania, with a total increase of 6,200 km2, or more than 31%,
from 2017 to 2023. In terms of total area, the Americas host the most expansive mining sites in 2023,

1The post-processing of predictions results in more conservative predictions for the initial and final years (2016 and 2024).
2Figure S1 in the Supplementary Information further decomposes the regional graphs in Figure 3 to show the three countries

within them that have the largest share of total mining area.
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at over 32,600 km2, increasing by 23% since 2017. In Africa, the increase in total mining polygon area
amounted to 16%, expanding from 12,900 km2 in 2017 to 14,900 km2 in 2023.

In Asia and Oceania, Indonesia stands out as the country with the largest mining polygon area. From
2017–2023, we observe considerable growth of Indonesian mining sites at 40%, making it also the country
with the largest absolute increase in mining polygon area globally. Two events that relate to this trend are a
Chinese ban of coal imports from Australia in December 2020, and a 2020 Mining Law Amendment that
relaxed environmental requirements.34 Notably, the annual mining polygon area in Indonesia is relatively
noisy, as the country houses some of the largest single mining sites. Other notable countries in the region
are India, which showed stable growth, and Myanmar. There, the area of mining polygons increased until
2020, and began to drop from 2021 onward, coinciding with the ongoing ‘Spring Revolution’.

In the Americas, Brazil is the country with the most expansive mining polygons. Significant growth
occurred from 2019–2022, during the administration of Jair Bolsonaro. Most of this expansion took place
in and along the fringes of the Amazon rainforest (cf., Figure 1), corroborating early concerns about
potential repercussions of legislative changes and increases in anti-environmental rhetoric.35 Chile, which
is only partially covered by our dataset, comes a close second. Mining polygons in the country are, on
average, larger than in other countries in the region. From 2017 to 2023, the area of mining polygons in
the country increased by about 25%.

In Africa, the country with the highest share of mining polygons and area is, despite it being only
covered partially, South Africa. The country has been experiencing stagnating mineral production since
the early 2010s,36 which is reflected by flat figures for the change of area and the number of mining
polygons in our dataset. Ghana drove most of the regional growth, with steady expansion that correlates
with rising international gold prices. Gold accounts for around 95% of the country’s mineral revenues, and
much of it is produced in small-scale artisanal mines.25 For Africa, Figure 3 shows a substantial increase
in the number of mining polygons, and moderate area increases which may be indicative of artisanal
mining. However, artisanal mining sites, which are widespread across Africa,37 are underrepresented in
our dataset.

Usage, limitations, and outlook
The introduced dataset contributes a time dimension to mining polygons at known locations. This enables
various applications and extensions, while maintaining certain limitations that we discuss next.

Applications The temporal dimension provides accurate polygons over time and enables multiple
analytical applications. First, it allows for more nuanced analyses of the direct and indirect impacts
of mines on their surrounding environments, such as forest loss or vegetation impacts.9, 14 Second, it
facilitates monitoring of mining sites, which can inform re-naturalization projects for abandoned mines.
Third, changes in the area of mining sites can serve as a proxy for on-site activity. This enables more
accurate assessments of mining-related impacts where data is incomplete or scarce,3 and facilitates
analyses in settings where no conventional data is available, e.g., due to conflict.

Advantages Our automated approach offers several distinct advantages. The segmentation process is
internally consistent and can be adjusted to meet specific requirements, such as balancing the cost of false
positives versus false negatives. The method also enables efficient scalability in both spatial and temporal
dimensions. As new satellite images become available, we can easily expand the temporal scope of the
dataset. Additionally, we can incorporate more frequent satellite imagery to assess intra-term changes

3For example, in analyses of societal impacts like conflict and corruption,6 environmental effects such as air and water
pollution,12 and their resulting socioeconomic consequences.
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in mining footprints. This could, e.g., help reveal transitory substitution of agricultural activities due to
meteorological shocks in subsistence economies. The spatial scope can be extended by incorporating new
mining locations — in regions beyond the tropics, or ones that are only sparsely covered by our sources
(e.g., in the Congo basin).

Current limitations
The dataset and approach presented here have noteworthy limitations.

First, polygons of individual mining sites should be used with caution. While the model performs
well on average and post-processing reduces the noise in our predictions, the results are not free of errors.
This is particularly problematic (a) where mining sites are imprecisely delineated in the ground truth (e.g.,
artisanal mining sites in Western Africa or the Amazon), (b) in areas where the environment provides
limited contrast (e.g., along the western coast of South America). While our predictions compare favorably
with the manually delineated datasets used to train the model (see the Methods section), we recommend
using any of these datasets at more aggregated levels.

Second, our approach relies on numerous high-resolution satellite images covering vast areas at high
frequency. This paper was possible due to the Planet/NICFI program, which provided free satellite
imagery of the tropical belt for research purposes. After the program’s expiration in January 2025, the
reproducibility and extensibility of the presented dataset is impeded. Future work and extensions will
require access to other sources of satellite imagery. These are currently prohibitively expensive (in the
case of high-resolution sensors), or require sacrifices in terms oft the resolution and frequency of available
imagery (in the case of Sentinel-2).

Third, our dataset focuses on tracking known mining sites over time, rather than identifying newly
established sites far from existing ones. Our source data on mining locations and, consequently, our
predictions, primarily cover industrial mines and smaller mines in their vicinity, potentially under-
representing regions where illegal or informal mining predominates. As a result, our dataset cannot
provide a complete overview of the development of tropical mining areas. Enhancing the coverage and
delineation of artisanal mining sites, as well as obtaining more comprehensive coverage statistics and
validation results, will require additional data.

Methods
In this section, we describe the data and methods used to produce the dataset, and our validation strategy.

Data
We begin by describing the satellite imagery used to delineate polygons, as well as the mining polygons
that constitute our ground truth.

Satellite imagery
We use high-resolution (< 5 m per pixel) satellite imagery from Planet’s PlanetScope constellation of
imaging satellites, made available for non-commercial use by NICFI. The imagery covers approximately
45 million square kilometers along the tropical belt, ±30 degrees of latitude. This includes several
important mineral extracting countries such as Indonesia, the Democratic Republic of the Congo (DRC),
and Brazil (see Figure 1), but excludes, e.g., Australia, the US, Russia, or China, and only partially covers
Chile, Argentina, or South Africa.

The dataset spans from December 2015 through December 2024. Imagery is available as biannual
composites (December–May, June–November) until May 2020, as a quarterly composite for June–August
2020, and as monthly composites thereafter. Images are provided as so-called ‘quads’, which are compiled
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from individual daily ‘scenes’ that are captured daily by the constellation of approximately 130 satellites.
An illustration of two monthly quads is provided in Figure S3 of the Appendix. This frequent capture rate
of imagery results in composite images with relatively high clarity.

For our annual predictions, we use imagery from the second half of the year (June–November). For
2016–2019, we use the provided quads composites as is, while we select the composites with optimal
quality (in terms of minimum cloud coverage) for 2020–2024. While quality metadata only exists for
individual scenes and thus represents worst-case estimates, we observe over 96% clarity on average across
our dataset (see Table S2 in the Supplementary Information for details).

Mining polygons
Our study relies on mining polygons from two comprehensive datasets to (a) establish a ground truth to
train our model and (b) provide mining locations for prediction.

The first dataset, initially presented in Maus et al. (2020)38 and updated in Maus et al. (2022),26 covers
both industrial and artisanal mines. The dataset contains 44,929 mining polygons covering approximately
101,583 km2 globally. The original dataset combined undated imagery from Google Satellite, Microsoft
Bing Imagery, and Sentinel-2, the updated data is based on Sentinel-2 imagery (10 m per pixel) from 2019.
Starting from the SNL Metals and Mining database locations, the authors examined 10 km buffers around
known mines to account for expansive operations and nearby (artisanal) mining sites.

The second dataset is an extended version of Tang et al. (2021)39, updated by Tang and Werner
(2023),28 and contains 74,548 mining polygons, covering roughly 66,000 km2 globally. The authors
combined various sources for mine locations, including the SNL database, as well as satellite imagery.
Imagery sources include Sentinel-2, Landsat, and high-resolution imagery available in Google Earth Pro
(< 1 m per pixel), although no single source was used consistently, and no timestamps are available.

These two datasets have considerable overlap in terms of mine locations, but differ in their segmentation
approaches. The second dataset28 precisely contours individual mine features, such as waste rock dumps,
pits, ponds, tailings dams, and infrastructure. By contrast, Maus et al.26 attempt to cover mining sites in
general, often including areas that cannot be strictly classified as mining areas themselves.4

Ground truth
Our ground truth data combines these two state-of-the-art mining polygon datasets, with each presenting
distinct challenges and advantages. The primary limitation in both datasets is the lack of exact timestamps.
We use 2019 as the reference year, but polygons may have been delineated using earlier satellite im-
agery. Additional imprecision may stem from heterogeneous satellite imagery, differences in delineation
approaches, and human factors, such as individual interpretation styles and fatigue effects.

To maximize the available information, we take the union of both datasets as our ground truth.5 The
union preserves polygons from both sources, and maintains outer boundaries where they intersect. The
resulting ground truth inherits the broader notion of mining polygons from the first dataset, while retaining
precise boundary information from the second one. While this approach sacrifices some granularity in
distinguishing individual mining features, it creates a more robust foundation for automatic delineation
and enables scalable analyses by incorporating the strengths of both source datasets.

4The Supplementary Information provides examples in Figure S2, showing polygons from both datasets overlaid on
Planet/NICFI imagery from 2019 at four locations.

5Experiments using either dataset individually yielded inferior results. Tang and Werner’s28 precise delineation proved
difficult to reproduce consistently, while using only Maus et al.’s26 dataset produced slightly worse segmentation results than
our combined approach.
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Segmentation model
For the delineation of mining areas over time, we use a segmentation model that is based on state-of-the-art
transformer architectures from the ML literature.40, 41 The process of obtaining mining polygons consists
of four steps: (1) preprocessing satellite imagery to generate datasets for training and prediction, (2)
training the model using our ground truth, (3) predicting mining site delineations for 2016-2024 and
mapping them back to their geospatial locations, and (4) postprocessing the predictions to reduce noise
and ensure temporal continuity.

Preprocessing Training the segmentation model requires two sources of data: satellite images and
corresponding segmentation masks that indicate mining areas. The model is trained on satellite imagery
from 2019, and segmentation masks are only generated for this reference year. The images, however, are
also used for prediction, and need to be generated for each year and polygon. We generate a square image
with twice the maximum side length of the respective polygon to accommodate potential growth over time,
and downscale them to 512×512 pixels if necessary. The resulting data is split into train/validation/test
samples using an 89/10/1 ratio, resulting in approximately 18,300 training samples, 2,100 validation
samples, and 200 samples for testing. The test samples were manually selected (from random samples) to
ensure they contain only precise high-quality delineations, avoiding noise in the ground truth.

Training For the segmentation task, we utilize the SegFormer model.31 SegFormer has demonstrated
strong performance on benchmark data sets,42, 43 and outperforms older architectures like U-Net,44, 45

which has previously been used for delineating mining areas in Sub-Saharan Africa.27 The model employs
a transformer architecture,40 which provides a broad receptive field and enables parallel processing.46

This allows transformer-based models to efficiently analyze images with global context, leading them to
regularly outperform convolutional neural networks like U-Net at segmentation.45

We specifically employ SegFormer-B5,31 the largest model variant. The encoder undergoes pre-
training on the Imagenet-1k dataset,47 before fine-tuning the whole model on our mining dataset for about
20 epochs.6 Due to the class imbalance, we use the mean Intersection over Union (mIoU) to assess the
model’s predictive performance. The model achieves an mIoU of 65.49% and a mean accuracy of 95.67%
on the test set when applying an optimized probability threshold p > 0.625 at the model’s probability
output. For a selected threshold of p > 0.55, chosen to match the ground truth in 2019, the model receives
an mIoU of 63.85% and a mean accuracy of 93.21%. For a rough comparison, a U-Net model trained
with similar parameters achieved an mIoU of 56.69% and a mean accuracy of 93.35%.

Prediction The prediction process, illustrated in Figure 4, generates mining polygons for all locations
for 2016–2024. The model outputs a probability for each pixel that indicates its confidence in the presence
of mining. To classify a certain pixel as part of a mine, we use a probability threshold that can be adjusted
to tweak, e.g., the false positive and false negative rates of the predictions. Lower thresholds result in more
and larger predicted mining polygons, and thus higher recall, while higher thresholds lead to fewer, but
more precise predictions.

To illustrate the flexibility that this parameter affords, we follow two strategies in setting it. First,
we consider multiple thresholds and manually optimize to p > 0.55 to emulate the ground truth in the
‘Reference validation’ section below. This facilitates comparison, and highlights the model’s ability to
interpolate between high-recall and high-precision approaches. As an alternative, we set the parameter by
optimizing the mIoU over the validation set, reaching an mIoU of 65.49%. The corresponding threshold

6We train on two NVIDIA A30 GPUs, employing class-balanced loss to address the imbalance between mining and
non-mining areas. Additionally, we apply data augmentation techniques, including random horizontal and vertical flipping,
random cropping, random resizing, and online hard example mining,48 to focus on challenging cases.
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Figure 4. Prediction process for three mining sites in Brazil (near Peixoto de Azevedo), Mozambique
(Balama graphite mine), and Indonesia (Toka Tindung, see Figure 2) in 2019. The left column shows
ground truth polygons, the center column shows the model’s probabilistic prediction, and the right column
shows the predicted polygons for thresholds of p > 0.55 and p > 0.625.
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of p > 0.625 means that only high-confidence pixels are classified as mines. The resulting dataset exceeds
the precision and specificity of both the ground truth and its individual components in segmenting mines,
but sacrifices recall.

To ease comparison with our source datasets, we use p > 0.55 as the default threshold, where not
mentioned otherwise. After creating the binary pixel-level predictions, we apply a contour finding
algorithm49 to transform these segmentation masks to polygons, and map the polygons back to their
geospatial coordinates using the previously calculated bounding boxes.

Postprocessing We implement postprocessing to ensure temporal continuity and to reduce noise in
the predictions. We remove any polygons that do not have an intersecting polygon in the previous or
subsequent year. This allows us to borrow information across years and reflects the assumption that mines
(and their corresponding polygons) do not emerge and disappear within a single year. Hence, the years
2016 and 2024, which only have a single ‘neighboring’ year to compare to, feature a lower number of
polygons while the impact on mining areas is limited.7 Lastly, we merge multiple, intersecting predictions
that may stem from locations with overlapping bounding boxes, and apply hole-filling to remove fragments
inside the predictions.

Reference validation
To assess our model in relation to existing datasets in the literature and fine-tune probability thresholds for
comparability, we use a set of labeled validation points. We rely on the set of validation points from Maus
et al.,26 which were generated within a 10 km buffer around the mines.8 Of their 1,220 original validation
points, 450 are covered by Planet/NICFI. We consider a random subset of 200 points and manually label
them as either mine or non-mine for each year using Planet/NICFI imagery. Based on these points, we
can systematically compare (1) our model’s predictions, (2) the ground truth, and (3) its two constituting
datasets.

Sampling strategy Before assessing the results, we note two drawbacks related to the sampling strategy
used to generate the validation points. The locations are not sampled randomly, but stratified across
the mine and non-mine categories, as segmented by Maus et al.26 As a result, (likely) non-mine labels
are spread out across their (large) area of interest, while mine labels from within their polygons are
overrepresented. Inherent to this strategy, the labels offer almost no meaningful variation over time. Points
from the vicinity of mining polygons, which may develop into mining areas over time, are undersampled,
and 181 of the 200 points do not change their label over time. We address this by reporting averages of the
yearly validation results. Nevertheless, the validation exercise must be seen in the context of the Maus et
al.26 dataset, from which it was sampled.

Validation results Our predictions achieve an average accuracy of 87.7% and an average Matthews
Correlation Coefficient (MCC) of 71.7% for a probability threshold of p > 0.55 on the validation points,
indicating performance that is comparable to the source data. For the p > 0.625 threshold, the average
accuracy is 83.3%, and the average MCC is 61.5%. By comparison, the ground truth achieves an average
accuracy of 88.1%, and MCC of 77.5%; the polygons of Maus et al.26 achieve values of 88.6% and 78.3%,

7To investigate potential bias from this postprocessing step, we experimented with applying a 100 m buffer to the predicted
polygons before the intersection, assuming that new mines may emerge or disappear near existing ones. We found that this
buffer had little impact on the result. This suggests that the postprocessing step primarily removes isolated polygons, which
may represent false positives and can be considered as noise.

8In their validation strategy, Tang and Werner28 use 200 validation polygons that (i) are not readily available and (ii) have
limited coverage in our area of interest.
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respectively, although these values benefit from the stratified sampling of validation points. Meanwhile,
the polygons of Tang and Werner28 achieve an average accuracy of 86.8%, and MCC of 69.7%.
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Figure 5. Reference validation results for our predictions (dots), the ground truth (solid line), and its
components (dashed and dotted lines). Our predictions are evaluated at different probability thresholds for
segmentation (along the horizontal axis). Two selected thresholds are highlighted: p > 0.55, the default
value due to its comparability to the ground truth, and p > 0.625, which achieves the optimal mIoU. Due
to the lack of variability over time, the values are averaged over the years; a variant of the plot with
year-specific results is provided in Figure S4 in the Supplementary Information.

Further validation results, including ones for a range of probability thresholds, are visualized in
Figure 5. The scores of our selected threshold of p > 0.55, lie between the two sources for our ground
truth, demonstrating how our method can combine their liberal and precise delineation styles. This
indicates the model’s ability to effectively integrate information from both sources, identify a shared
definition of mining polygons, and accurately extrapolate it to nine different timestamps.

What is notable is that our model can go beyond the performance of either dataset used to train it.
Due to the imbalance between non-mine and mine areas, we particularly value precision (user’s accuracy,
UA) in segmenting mines over their recall (producer’s accuracy, PA), although the opposite would also be
possible. The selected threshold of p > 0.55, already achieves an average precision of 84.1%, exceeding
the ground truth (73.5%), and its components (74.4% and 82.3%), while the higher threshold of p > 0.625
even reaches 90.3%. As a result, predictions feature considerably lower false positive rates at 7.1% and
3.0%, than the ground truth (17.5%), Maus et al.26 (16.8%), or Tang and Werner28 (8.0%). This highlights
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the adaptability of our modeling approach, which can be fine-tuned to the task at hand.

Usage notes
The dataset of mining polygons is available in multiple formats to ensure accessibility. An interactive
map that allows the visualization of yearly predictions against (Sentinel-2) satellite imagery is available at
layers.at. The full dataset, which includes the hand-validated test set, and validation points, can be obtained
from owncloud.wu.ac.at, and will be made available openly on Zenodo. The dataset is licensed under the
Open Database License (ODbL, available at opendatacommons.org). Any rights in individual contents of
the database are licensed under the Database Contents License (DbCL, available at opendatacommons.org).
The dataset and validation points are provided in the GeoPackage (GPKG) format, and contain information
on the polygons themselves, the countries where they are located in, the years in which they are segmented,
and the areas of polygons.

Code availability
All code used to produce the dataset and results of this paper is available under the GNU General
Public License v3.0 (GPLv3, available at gnu.org) at github.com. The repository includes comprehensive
documentation and usage instructions. Further, the training and validation datasets are available at
kaggle.com. Scripts were written in Python and R, with geospatial processing heavily utilizing the
‘GeoPandas’,50 ‘Shapely’,51 and ‘sf’52 packages. The model was implemented using ‘PyTorch’53 and
‘MMSegmentation’.54
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Supplementary Information
Here we provide some additional figures and tables that allow for more detailed insights in the produced
dataset as well as the underlying ground truth data and satellite imagery. Figure S1 decomposes the global
version Figure 3 in the manuscript to depict regional summaries of the predictions over time. It shows the
development of the total area and number of mining polygons for the three countries within each region
that had the highest share on overall mining polygon area separately as well as for the remaining countries
aggregated.

Table S1 similarly provides information on the total mining polygon area for countries with a large
mining footprint (defined as exceeding 100 km2 at least once during the observation period). It extends
Table 1 in the manuscript and confirms the general trend of increasing total mining polygon area over the
years also within most countries.

Figure S2 shows satellite imagery from 2019 for four mine sites across the covered area overlayed
with polygons from the two datasets that constitute the ground truth used for training the segmentation
model. It shows that the rather broadly defined delineations of Maus et al. (2022)26 often encompass the
more precisely delineated ones from Tang and Werner (2023)28, which also sometimes pick up additional
mining features.

Figure S3 and Table S2 provide some additional information about the results from the steps undertaken
to select the images with highest clarity (i.e., lowest cloud and heavy haze coverage) from a 6-month
window (June–November) for each mining site individually. Table S2 shows that the clarity of selected
yearly satellite images for the period 2020–2024 is on average comparable or even exceeds the one for
period 2016–2019, where we take the biannual composites as is. Figure S3 provides an example for
the importance of this procedure to select highest-clarity images, showing two composite images from
October and December 2024 for the area surrounding the Toka Tindung mining site.

Figure S4 shows some of the validation metrics discussed in the Methods section of the paper over
time for two different probality thresholds. It shows limited variability in most of these metrics over time,
which mostly stems from a lack of variation in the labels of the validation points. Yet, it can be discerned
that our modeling approach achieves performance comparable to the ground truth and its constituting
datasets over the year. Differences in metrics across the selected probability thresholds over the also
emulate the ones shown in Figure 5.
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Figure S1. Regional summaries of the predictions over time; the left column shows total mining areas,
and the right the number of mine polygons. Note, in particular, the strong increases in area for Chile and
Peru in 2022 (top row), the sharp decrease in area following years of steady expansion for Indonesia in
2022 (middle row), and the steady expansion in the number of mining polygons coupled with only modest
increases in area for Ghana (bottom row).
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Country
Total Mining Polygon Area (km2)

2016 2017 2018 2019 2020 2021 2022 2023 2024

Indonesia 13,266 12,425 12,376 13,761 15,281 16,859 15,746 17,497 17,801
Brazil 7,829 8,785 8,002 8,023 8,548 8,215 9,764 9,342 9,360
Chile 6,293 5,748 5,746 7,161 7,269 6,434 7,561 7,176 7,218
South Africa 7,469 6,624 5,901 6,706 6,324 6,044 6,434 6,459 6,558
India 3,502 3,800 3,590 4,140 4,136 3,959 4,322 4,367 4,114

Myanmar 2,670 2,497 2,667 2,607 3,800 3,129 3,099 2,769 2,890
Bolivia 557 787 806 1,025 910 1,103 1,108 2,035 2,695
Guyana 2,082 2,245 2,368 2,246 2,380 3,213 2,942 3,197 2,570
Suriname 1,906 1,824 1,902 1,986 1,976 2,111 2,119 2,382 2,430
Peru 2,328 2,502 2,860 2,735 2,816 3,287 4,286 3,172 2,165

Venezuela 1,183 1,354 1,285 1,341 1,414 1,442 1,310 1,528 1,688
Ghana 1,143 735 957 1,189 979 1,158 1,411 1,516 1,641
Namibia 596 1,037 925 1,217 1,135 1,043 1,503 1,381 1,246
Colombia 961 908 885 1,013 927 1,067 1,083 1,117 1,083
Mexico 812 847 864 957 931 959 1,060 1,023 998

Argentina 816 916 898 933 931 884 816 875 963
Zambia 732 668 660 677 803 745 757 814 830
Dem. Rep. Congo 615 622 629 680 732 692 732 794 806
Zimbabwe 505 458 484 472 508 585 607 697 674
Angola 500 440 421 442 487 540 479 543 562

Vietnam 478 458 443 446 419 519 536 516 523
Philippines 372 370 407 415 395 428 456 489 430
Botswana 297 343 366 353 351 354 334 379 360
Malaysia 268 273 270 257 237 300 320 331 331
Mali 252 219 232 276 251 295 358 355 317

Guinea 214 239 213 263 242 290 278 294 236
France 193 227 257 218 189 216 247 242 233
Burkina Faso 188 223 190 206 184 191 203 204 227
Thailand 200 182 196 224 204 231 210 198 221
Mozambique 188 177 197 120 211 224 210 219 218

Tanzania 212 199 171 208 190 212 204 236 212
Papua New Guinea 150 197 219 220 240 407 221 218 199
Cuba 147 124 138 137 133 166 180 172 158
Senegal 104 127 143 128 134 133 130 127 149
Niger 142 181 171 178 195 138 207 138 143

Sierra Leone 93 113 123 132 143 134 139 152 136
Ecuador 62 70 74 92 118 73 117 119 121
Côte d’Ivoire 60 74 96 99 100 113 129 132 111

Table S1. Total mining polygon area in the countries with a large mining footprint (> 100 km2) in the
dataset over time.
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Figure S2. Four examples of the source polygons for our ground truth.26, 28 The mine sites are located in
Indonesia (Toka Tindung, from Figure 2), the DRC (Kapulo Copper Mine), Chile (Minera Sierra Gorda),
and Suriname (south of the Brokopondo Reservoir) against 2019 Planet/NICFI imagery. Note the different
zoom level of the top and bottom rows.
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Figure S3. Two satellite images (Planet/NICFI) of the Toka Tindung mine (from Figure 2) for 2024. The
left image is a composite from October 2024 and features high clarity (99.9%), while the latest image
from December 2024 has clearly visible artifacts, reducing its clarity. Our approach selects the
highest-clarity image from a six-month window, leading to high-quality images throughout.

Year Mean SD Percentiles

1st 5th 10th 50th 90th

2016 94.29 (12.32) 38.00 67.00 81.36 99.64 100
2017 95.24 (10.21) 46.94 72.83 87.00 99.96 100
2018 94.55 (10.13) 57.19 67.54 80.52 99.33 100

2019 97.05 (8.15) 63.43 73.79 89.48 100.0 100
2020 97.44 (7.28) 65.46 77.64 91.00 100.0 100
2021 97.48 (7.57) 62.73 78.07 94.25 100.0 100

2022 95.61 (11.25) 53.70 60.80 84.11 100.0 100
2023 95.80 (10.77) 53.74 65.16 82.20 100.0 100
2024 96.01 (8.97) 66.79 72.14 79.16 100.0 100

Table S2. Summary statistics for the visibility of selected yearly satellite images. Note that the visibility
metadata is only available on a per-scene basis; we average scene-level characteristics to compute the
relevant quad-level information.
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Figure S4. Reference point validation for individual years.
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