Man Eats Forest

Impacts of Cattle Ranching on Amazon Deforestation

MEEW 2025 — Melbourne, Australia

Nikolas Kuschnig & Lukas Vashold*

November 27, 2025

*Vienna University of Economics and Business
Department of Economics & Institute for Ecological Economics
lukas.vashold@wu.ac.at

- Amazon deforestation continues to be an issue, threatening
 - local biodiversity and livelihoods (Gibson et al. 2011; Villén-Pérez et al. 2022)
 - regional and global *climates* (Leite-Filho et al. 2021; Araujo et al. 2023)

- Amazon deforestation continues to be an issue, threatening
 - local biodiversity and livelihoods (Gibson et al. 2011; Villén-Pérez et al. 2022)
 - regional and global *climates* (Leite-Filho et al. 2021; Araujo et al. 2023)
- In Brazil, demand for land primarily stems from agriculture,
 - with cattle and soy being the predominant factors (Rajão et al. 2020)
 - mining and other agricultural products play a limited role (Garrett et al. 2021)

- Amazon deforestation continues to be an issue, threatening
 - local biodiversity and livelihoods (Gibson et al. 2011; Villén-Pérez et al. 2022)
 - regional and global climates (Leite-Filho et al. 2021; Araujo et al. 2023)
- In Brazil, **demand for land** primarily stems from **agriculture**,
 - with cattle and soy being the predominant factors (Rajão et al. 2020)
 - mining and other agricultural products play a limited role (Garrett et al. 2021)
- But no framework for causal interpretation of its deforestation impacts,
 - footprint analyses lack causal interpretability
 - naive regressions indicate limited impacts

- Amazon deforestation continues to be an issue, threatening
 - local biodiversity and livelihoods (Gibson et al. 2011; Villén-Pérez et al. 2022)
 - regional and global climates (Leite-Filho et al. 2021; Araujo et al. 2023)
- In Brazil, demand for land primarily stems from agriculture,
 - with cattle and soy being the predominant factors (Rajão et al. 2020)
 - mining and other agricultural products play a limited role (Garrett et al. 2021)
- But no framework for **causal interpretation** of its deforestation impacts,
 - footprint analyses lack causal interpretability
 - naive regressions indicate limited impacts

In this paper, we causally identify and quantify the local deforestation impacts of the production-driven cattle expansion in the Legal Amazon

Legal Amazon in 2000

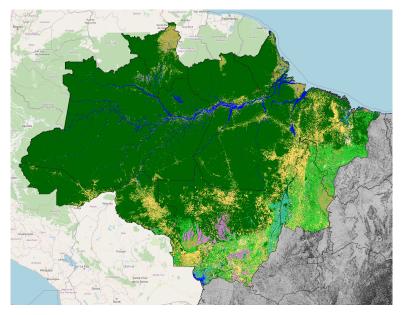


Figure: Land cover, including forest, pasture, and croplands, in the Legal Amazon in 2000.

Legal Amazon in 2022

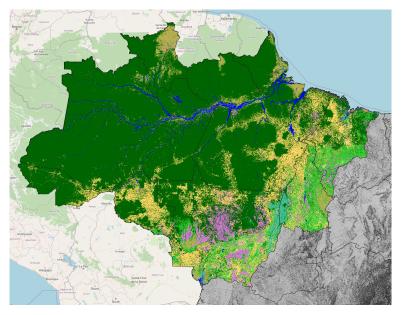
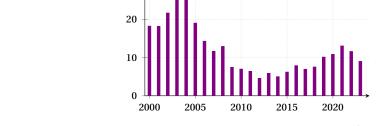


Figure: Land cover, including forest, pasture, and croplands, in the Legal Amazon in 2022.

Reasons for high levels and resurgence include:



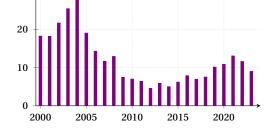
30

Figure: Deforestation in the Brazilian Amazon (in 1,000 km²).

- a. Cusack et al. 2021; Pendrill et al. 2022.
- b. Reydon et al. 2020.
- c. Garrett et al. 2021; Burgess et al. 2024.

Reasons for high levels and resurgence include:

- strong and rising demand for agricultural products, driving beef production^a
 - can be met with intensification, or deforestation at the extensive margin.



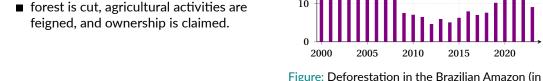
30

Figure: Deforestation in the Brazilian Amazon (in 1,000 km²).

- a. Cusack et al. 2021; Pendrill et al. 2022.
- b. Reydon et al. 2020.
- c. Garrett et al. 2021; Burgess et al. 2024.

Reasons for high levels and resurgence include:

- strong and rising demand for agricultural products, driving beef production^a
 - can be met with intensification, or deforestation at the extensive margin.
- weak land governance enabling speculative land appropriation^b



- a. Cusack et al. 2021; Pendrill et al. 2022.
- b. Reydon et al. 2020.
- c. Garrett et al. 2021; Burgess et al. 2024.

20

1,000 km²).

Reasons for high levels and resurgence include:

- strong and rising demand for agricultural products, driving beef production^a
 - can be met with intensification, or deforestation at the extensive margin.
- weak *land governance* enabling speculative land appropriation^b
 - forest is cut, agricultural activities are feigned, and ownership is claimed.
- policy interventions being **not resilient** with respect to political influence^c
- a. Cusack et al. 2021; Pendrill et al. 2022.
- b. Reydon et al. 2020.
- c. Garrett et al. 2021; Burgess et al. 2024.

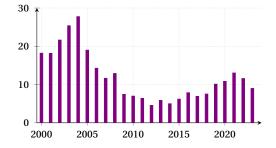


Figure: Deforestation in the Brazilian Amazon (in 1,000 km²).

Reasons for high levels and resurgence include:

- strong and rising demand for agricultural products, driving beef production^a
 - can be met with intensification, or deforestation at the extensive margin.
- weak land governance enabling speculative land appropriation^b
 - forest is cut, agricultural activities are feigned, and ownership is claimed.
- policy interventions being not resilient with respect to political influence^c
- a. Cusack et al. 2021; Pendrill et al. 2022.
- b. Reydon et al. 2020.
- c. Garrett et al. 2021; Burgess et al. 2024.

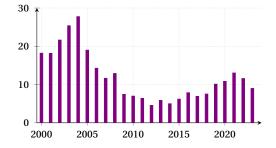


Figure: Deforestation in the Brazilian Amazon (in 1,000 km²).

The cattle and beef industry in Brazil...

The cattle and beef industry in Brazil...

■ ...is important for the national economy at **8% of GDP** (CEPEA 2023), and the livelihoods of local farmers specifically (Ermgassen et al. 2020),

The cattle and beef industry in Brazil...

- ...is important for the national economy at **8% of GDP** (CEPEA 2023), and the livelihoods of local farmers specifically (Ermgassen et al. 2020),
- ...is moving deeper into the Amazon (Vale et al. 2022) and is the proximate cause of ~90-95% of deforestation there (Haddad et al. 2024),
- ...is linked to deforestation that accounts for a **fifth of global land use emissions** from the tropics, ~500MT per year (Pendrill et al. 2019),

The cattle and beef industry in Brazil...

- ...is important for the national economy at **8% of GDP** (CEPEA 2023), and the livelihoods of local farmers specifically (Ermgassen et al. 2020),
- ...is moving deeper into the Amazon (Vale et al. 2022) and is the **proximate cause** of ~90-95% of deforestation there (Haddad et al. 2024),
- ...is linked to deforestation that accounts for a **fifth of global land use emissions** from the tropics, ~500MT per year (Pendrill et al. 2019),
- ...and, due to the mobility of cattle, acts as the main intermediary for land appropriations in the Amazon (Fearnside 2017).

Empirical Specification

■ We depart from a simple (first-difference) panel regression specification:

$$\Delta y_{i,t} = \beta \Delta c_{i,t} + \Delta X'_{i,t-s} \gamma + \mu_t + u_{i,t}$$

- $\Delta y_{i,t}$ denotes **forest change** in municipality *i* at time *t*,
- $\Delta c_{i,t}$ is a measure of **cattle expansion** (e.g. change in cattle head),
- \blacksquare $\mathbf{X}_{i,t-s}$ holds various control variables, and μ_t are time-fixed effects.

Empirical Specification

■ We depart from a simple (first-difference) panel regression specification:

$$\Delta y_{i,t} = \beta \Delta \hat{\mathbf{c}}_{i,t} + \Delta \mathbf{X}'_{i,t-s} \boldsymbol{\gamma} + \mu_t + u_{i,t}$$
$$\Delta c_{i,t} = \Delta \mathbf{X}'_{i,t-s} \boldsymbol{\alpha} + \omega B_{i,t} + \mu_t^b + \varepsilon_{i,t}$$

- $rianlge \Delta y_{i,t}$ denotes **forest change** in municipality *i* at time *t*,
- lacktriangle $\Delta c_{i,t}$ is a measure of **cattle expansion** (e.g. change in cattle head),
- $\mathbf{X}_{i,t-s}$ holds various control variables, and μ_t are time-fixed effects.
- Use the instrument $B_{i,t}$ to causally identify the effect of interest, β , as
 - \blacksquare as, inter alia, $c_{i,t}$ captures multiple drivers of the cattle expansion,
 - and naive regressions capture distorted global effects away from the frontier.
- and isolate the local impacts of the **production-driven cattle expansion**.

Construction of the instrument Details

We construct the shift-share (or 'Bartik')¹ instrument $B_{i,t}$ as

$$B_{i,t} = \sum_{m} \frac{\text{exports}_{i,m,t=0}}{\text{exports}_{i,t=0}} z_{i,t=0} g_{m,t}$$

Construction of the instrument Details

We construct the shift-share (or 'Bartik')¹ instrument $B_{i,t}$ as

$$B_{i,t} = \sum_{m} \frac{\text{exports}_{i,m,t=0}}{\text{exports}_{i,t=0}} z_{i,t=0} g_{m,t}$$

■ Distance to slaughterhouse locations, interacted with municipality i's initial cattle stocks as **share** $z_{i,t=0}$ to measure exposure to beef industry

Construction of the instrument Details

We construct the shift-share (or 'Bartik')¹ instrument $B_{i,t}$ as

$$B_{i,t} = \sum_{m} \frac{\text{exports}_{i,m,t=0}}{\text{exports}_{i,t=0}} z_{i,t=0} g_{m,t}$$

- Distance to slaughterhouse locations, interacted with municipality i's initial cattle stocks as **share** $z_{i,t=0}$ to measure exposure to beef industry
- Changes in international beef consumption as **shifts** $g_{m,t}$, where we consider
 - (i) changes in all export destinations weighted by exports at the municipality level
 - (ii) changes in Chinese beef consumption for periods lacking export information

$$B_{i,t} = \sum_{m} \frac{\text{exports}_{i,m,t=0}}{\text{exports}_{i,t=0}} z_{i,t=0} g_{m,t}$$

- Distance to slaughterhouse locations, interacted with municipality i's initial cattle stocks as **share** $z_{i,t=0}$ to measure exposure to beef industry
- Changes in international beef consumption as shifts $g_{m,t}$, where we consider
 - (i) changes in all export destinations weighted by exports at the municipality level
 - (ii) changes in **Chinese beef consumption** for periods lacking export information

Rely on shift exogeneity for identification, and exploit shares for relevance

Shift-Share Instrument Components

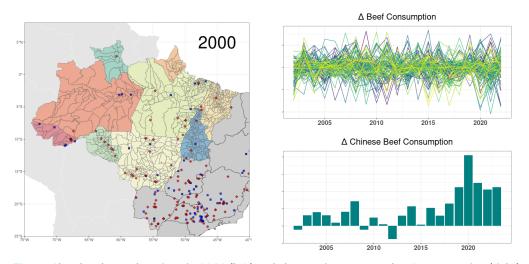


Figure: Slaughterhouse locations in 2000 (left) and changes in aggregate beef consumption (right). Sources: Vale et al. 2022; FAO 2024

Data & Sources

Main sample covers 808 municipalities in the Legal Amazon from 2003 until 2022:

- Land cover and land use change statistics (MapBiomas 2024)
- Socioeconomic and agricultural data (IBGE 2024)
- Environmental fines (IBAMA 2024)
- Protected areas (UNEP-WCMC and IUCN 2024)
- Meteorological indicators (Beguería et al. 2010)
- Slaughterhouse locations (Vale et al. 2022)
- Municipality-level beef exports (Ermgassen et al. 2020)
- International beef consumption (FAO 2024)

Results, cattle expansion

	2003-2022	2011-2022		
$\Delta Forest \sim$	OLS	OLS		
ΔCattle	-0.102 (0.02)	- 0.108 (0.03)		
Covariates Year FEs	Full Yes			
$N \times T$ F stat (Cattle)	16,160	9,696		

Standard errors clustered at the municipality-level. Significant (p < 0.01) estimates in **bold**.

Pasture expansion

Results, cattle expansion

	2003-2022			2011-2022
Δ Forest \sim	OLS	IV-CHN	OLS	
ΔCattle	- 0.102 (0.02)	-0.402 (0.13)	-0.108 (0.03)	
Covariates Year FEs	Full Yes			
$N \times T$ $F \text{ stat (Cattle)}$	16,160	16,160 318.2	9,696	

Standard errors clustered at the municipality-level. Significant (p < 0.01) estimates in **bold**.

Pasture expansion

Results, cattle expansion

	2003-2022		:	2011-2022		
Δ Forest \sim	OLS	IV-CHN	OLS	IV-CHN	IV-EXP	
ΔCattle	- 0.102 (0.02)	- 0.402 (0.13)	-0.108 (0.03)	-0.425 (0.13)	- 0.341 (0.10)	
Covariates Year FEs	Full Yes					
$N \times T$ <i>F</i> stat (Cattle)	16,160	16,160 318.2	9,696	 427.3	57.1	

Standard errors clustered at the municipality-level. Significant (p < 0.01) estimates in **bold**.

▶ Pasture expansion

- Footprint analyses imply substantial land use needs of cattle
 - Stocking rates suggest that each cow requires ~0.8 hectare of grazing area²
 - Reported forest-to-pasture transition rate of ~0.66 hectare per cattle³

- 2. Arantes et al. 2018.
- 3. MapBiomas 2024; IBGE 2024.

- Footprint analyses imply substantial land use needs of cattle
 - Stocking rates suggest that each cow requires ~0.8 hectare of grazing area²
 - Reported **forest-to-pasture** transition rate of ~**0.66 hectare** per cattle³
- Naive estimates suggest almost decoupling of cattle and land

- 2. Arantes et al. 2018.
- 3. MapBiomas 2024; IBGE 2024.

- Footprint analyses imply substantial land use needs of cattle
 - Stocking rates suggest that each cow requires ~0.8 hectare of grazing area²
 - Reported **forest-to-pasture** transition rate of ~**0.66 hectare** per cattle³
- Naive estimates suggest almost **decoupling** of cattle and land
- Instrumented estimates closer to those suggested by footprint analyses
 - but still amount to only 56-70% of them
 - large share of observed deforestation unexplained

- 2. Arantes et al. 2018.
- 3. MapBiomas 2024; IBGE 2024.

- Footprint analyses imply substantial land use needs of cattle
 - Stocking rates suggest that each cow requires ~0.8 hectare of grazing area²
 - Reported **forest-to-pasture** transition rate of ~**0.66 hectare** per cattle³
- Naive estimates suggest almost **decoupling** of cattle and land
- Instrumented estimates closer to those suggested by footprint analyses
 - but still amount to only 56-70% of them
 - large share of observed deforestation unexplained
- Substantial aggregate effects of production-driven cattle expansion
 - Cattle herds in Legal Amazon grew by ≈40 million in 2003–2022
 - Amounts to ≈16 million hectares of forest lost due beef production
 - Using conservative conversion rates, this implies 4.8 gigatons of CO₂ emissions

- 2. Arantes et al. 2018.
- 3. MapBiomas 2024; IBGE 2024.

Results, biome heterogeneity

Biome	Ama	izon	Cerrado		
	Δ Forest~		∆Forest~	incl. Savanna~	
	OLS	IV			
Δ Cattle	- 0.107 (0.03)	- 0.492 (0.15)			
Covariates Year FEs	Full Yes				
N × T F stat	10,060	 198.6			

Standard errors clustered at the municipality-level. Significant (p < 0.01) estimates in **bold**.

Results, biome heterogeneity

Biome	Amazon		Cerrado			
	Δ Forest~		Δ Forest \sim		incl. Savanna~	
	OLS	IV	OLS	IV		
Δ Cattle	-0.107 (0.03)	- 0.492 (0.15)	-0.003 (.002)	-0.014 (0.02)		
Covariates Year FEs	Full Yes					
N × T F stat	10,060	 198.6	21,240	 53.2		

Standard errors clustered at the municipality-level. Significant (p < 0.01) estimates in **bold**.

Results, biome heterogeneity

Biome	Ama	izon	Cerrado			
	Δ Forest~	~	Δ Forest	~	incl. Savanna~	
	OLS	IV	OLS	IV	OLS	IV
Δ Cattle	- 0.107 (0.03)	- 0.492 (0.15)	-0.003 (.002)	-0.014 (0.02)	- 0.027 (.005)	- 0.388 (0.18)
Covariates Year FEs	Full Yes					
$N \times T$ $F \text{ stat}$	10,060	 198.6	21,240	 53.2		53.2

Standard errors clustered at the municipality-level. Significant (p < 0.01) estimates in **bold**.

Results, government heterogeneity

	Lula		Rousseff	Temer	Bolsonaro
Δ Forest \sim	OLS	IV			
ΔCattle	-0.097 (0.03)	-0.482 (0.08)			
Covariates Year FEs	Full Yes				
N × T F stat	6,464	6,464 147.4			

Standard errors clustered at the municipality-level. Significant (p < 0.01) estimates in **bold**.

Results, government heterogeneity

	Lu	ıla	Rou	sseff	Temer	Bolsonaro
$\Delta Forest \sim$	OLS	IV	OLS	IV		
ΔCattle	- 0.097 (0.03)	-0.482 (0.08)	-0.046 (0.01)	-0.137 (0.07)		
Covariates Year FEs	Full Yes					
N × T F stat	6,464	6,464 147.4	4,040	4,040 36.8		

Standard errors clustered at the municipality-level. Significant (p < 0.01) estimates in **bold**.

Results, government heterogeneity

	Lu	ıla	Rousseff		Ter	mer	Bolsonaro
Δ Forest \sim	OLS	IV	OLS	IV	OLS	IV	
∆Cattle	-0.097 (0.03)	-0.482 (0.08)	- 0.046 (0.01)	-0.137 (0.07)	- 0.085 (0.03)	-0.584 (0.16)	
Covariates Year FEs	Full Yes						
N × T F stat	6,464	6,464 147.4	4,040	4,040 36.8	2,424	2,424 62.4	

Results, government heterogeneity

	Lu	ıla	Rousseff		Ter	Temer		Bolsonaro	
Δ Forest \sim	OLS	IV	OLS	IV	OLS	IV	OLS	IV	
ΔCattle	- 0.097 (0.03)	-0.482 (0.08)	- 0.046 (0.01)	-0.137 (0.07)	- 0.085 (0.03)	-0.584 (0.16)	- 0.158 (0.04)	-0.473 (0.13)	
Covariates Year FEs	Full Yes								
N × T F stat	6,464	6,464 147.4	4,040	4,040 36.8	2,424	2,424 62.4	3,232	3,232 269.7	

Results, intensification

	All biomes		Legal Amazon	Amazon biome
Δ Forest \sim	OLS	IV		
ΔCattle per pasture	0.054 (0.02)	0.239 (0.09)		
Covariates Year FEs	Full Yes			
$N \times T$ F stat	31,480	 782.4		

Results, intensification

	All bid	All biomes		mazon	Amazon biome
Δ Forest \sim	OLS	IV	OLS	IV	
Δ Cattle per pasture	0.054 (0.02)	0.239 (0.09)	0.104 (0.03)	0.470 (0.17)	
Covariates Year FEs	Full Yes				
$N \times T$ F stat	31,480	 782.4	16,160	 397.2	

Results, intensification

	All biomes		Legal A	Legal Amazon		biome
Δ Forest \sim	OLS	IV	OLS	IV	OLS	IV
Δ Cattle per pasture	0.054 (0.02)	0.239 (0.09)	0.104 (0.03)	0.470 (0.17)	0.158 (0.05)	0.746 (0.27)
Covariates Year FEs	Full Yes					
$N \times T$ F stat	31,480	 782.4	16,160	 397.2	10,060	 245.6

Results, robustness

We assess the **sensitivity of results** along several dimensions:

- Varying **share** definitions
 - Different computations of distance to slaughterhouses
 - Omitting slaughterhouse location information
 - Updating shares over time
- **Sample** variations
 - All municipalities in Amazon, Cerrado, and Pantanal
 - Only municipalities with deforestation and 10% initial tree cover
- **Specification** variations
 - Including municipality FEs (time trends)
 - Excluding year FEs
 - Lag structure of treatment/instrument/controls

Implications

- The beef industry is considered a driver of economic growth
 - Monitoring supply chains complicated (Alix-Garcia et al. 2017),
 - but recent initiatives (EUDR) could be role model for other markets

- 4. Haddad et al. 2024.
- 5. Godfray et al. 2018.

Implications

- The beef industry is considered a **driver of economic growth**
 - Monitoring supply chains complicated (Alix-Garcia et al. 2017),
 - but recent initiatives (EUDR) could be role model for other markets
- Few interventions disincentivize the demand for LU-intensive food products
 - Domestic taxes more targeted⁴; Global GHG tax affects meat products⁵
 - Marketing restrictions and information provision, e.g. "do pasto ao prato"

- 4. Haddad et al. 2024.
- 5. Godfray et al. 2018.

Implications

- The beef industry is considered a **driver of economic growth**
 - Monitoring supply chains complicated (Alix-Garcia et al. 2017),
 - but recent initiatives (EUDR) could be role model for other markets
- Few interventions disincentivize the demand for LU-intensive food products
 - **Domestic** taxes more targeted⁴; **Global** GHG tax affects meat products⁵
 - Marketing restrictions and information provision, e.g. "do pasto ao prato"
- Supply-side measures to decrease land pressures from given production
 - Targeted **credit provision** for intensification of existing pasture
 - Other measures to incentivize restoration of pasture/forest (similar to REDD+?)

- 4. Haddad et al. 2024.
- 5. Godfray et al. 2018.

Summary & Conclusion

■ We causally identify and quantify the local deforestation impacts of the production-driven cattle expansion in the Legal Amazon

Summary & Conclusion

- We causally identify and quantify the local deforestation impacts of the production-driven cattle expansion in the Legal Amazon
- Our results suggest that ...
 - ... the production-driven expansion is a considerable driver of deforestation
 - ... effects are underestimated without proper identification
 - ... but explains only 56-70% of observed cattle-related deforestation
 - ... intensification may alleviate land pressures.

Summary & Conclusion

- We causally identify and quantify the local deforestation impacts of the production-driven cattle expansion in the Legal Amazon
- Our results suggest that ...
 - ... the production-driven expansion is a considerable driver of deforestation
 - ... effects are **underestimated** without proper identification
 - ... but explains only **56-70%** of observed cattle-related deforestation
 - ... intensification may alleviate land pressures.

For more information, download the slides or contact me at

- lukas.vashold@wu.ac.at
- www.vashold.eu

References I

- Alix-Garcia, Jennifer, et al. 2017. "Forest conservation effects of Brazill's zero deforestation cattle agreements undermined by leakage." *Global Environmental Change* 47:201–217. ISSN: 0959-3780. https://doi.org/10.1016/j.gloenvcha.2017.08.009.
- Arantes, Arielle Elias, et al. 2018. "Livestock intensification potential in Brazil based on agricultural census and satellite data analysis." *Pesquisa Agropecuria Brasileira* 53 (September): 1053–1060. ISSN: 0100-204X. https://doi.org/10.1590/S0100-204X2018000900009.
- Araujo, Rafael, et al. 2023. "Estimating the spatial amplification of damage caused by degradation in the Amazon." *Proceedings of the National Academy of Sciences* 120, no. 46 (November): e2312451120. https://doi.org/10.1073/pnas.2312451120.
- Beguería, Santiago, et al. 2010. "A multiscalar global drought dataset: the SPElbase: a new gridded product for the analysis of drought variability and impacts." *Bulletin of the American Meteorological Society* 91 (10): 1351–1356. https://doi.org/10.1175/2010bams2988.1.
- Borusyak, Kirill, et al. 2022. "Quasi-experimental shift-share research designs." *Review of Economic Studies* 89 (1): 181–213. ISSN: 0034-6527. https://doi.org/10.1093/restud/rdab030.
- Burgess, Robin, et al. 2024. *National Borders and the Conservation of Nature*, August. https://doi.org/10.31235/osf.io/67xg5.
- CEPEA. 2023. Brazilian Agribusiness GDP. Retrieved at December 28'h 2023 from: https://www.cepea.esalq.usp.br/en/brazilian-agribusiness-gdp.aspx. São Paulo, Brazil.

References II

- Cusack, Daniela F., et al. 2021. "Reducing climate impacts of beef production: A synthesis of life cycle assessments across management systems and global regions." *Global Change Biology* 27, no. 9 (May): 1721–1736. ISSN: 1354-1013. https://doi.org/10.1111/gcb.15509.
- Ermgassen, Erasmus K. H. J. zu, et al. 2020. "The origin, supply chain, and deforestation risk of Brazil's beef exports." *Proceedings of the National Academy of Sciences* 117, no. 50 (December): 31770–31779. ISSN: 0027-8424. https://doi.org/10.1073/pnas.2003270117.
- FAO. 2024. Food and Agriculture Statistics. Retrieved at September 16th 2024 from: https://www.fao.org/faostat/en/. Rome, Italy.
- Fearnside, Phillip. 2017. "Deforestation of the Brazilian Amazon." In Oxford Research Encyclopedia of Environmental Science. September. https://doi.org/10.1093/acrefore/9780199389414.013.102.
- Garrett, Rachael D., et al. 2021. "Forests and sustainable development in the Brazilian Amazon: history, trends, and future prospects." *Annual Review of Environment and Resources* 46, no. 1 (October): 625–652. ISSN: 1543-5938. https://doi.org/10.1146/annurev-environ-012220-010228.
- Gibson, Luke, et al. 2011. "Primary forests are irreplaceable for sustaining tropical biodiversity." *Nature* 478 (October): 378–381. ISSN: 1476-4687. https://doi.org/10.1038/nature10425.
- Godfray, H. Charles J., et al. 2018. "Meat consumption, health, and the environment." *Science* 361, no. 6399 (July). ISSN: 0036-8075. https://doi.org/10.1126/science.aam5324.

References III

- Haddad, Eduardo A., et al. 2024. "Economic drivers of deforestation in the Brazilian Legal Amazon." *Nature Sustainability* 7 (September): 1141–1148. ISSN: 2398-9629. https://doi.org/10.1038/s41893-024-01387-7.
- IBAMA. 2024. *Dados Abertos*. Retrieved at September 16^t h 2024 from: https://dadosabertos.ibama.gov.br/. São Paulo, Brazil.
- IBGE. 2024. Sistema IBGE de recuperação automática. Retrieved at September 16^t h 2024 from: https://sidra.ibge.gov.br/. São Paulo, Brazil.
- Leite-Filho, Argemiro Teixeira, et al. 2021. "Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon." *Nature Communications* 12, no. 2591 (May): 1–7. ISSN: 2041-1723. https://doi.org/10.1038/s41467-021-22840-7.
- MapBiomas. 2024. Annual Land Use Land Cover Maps of Brazil. Available at: https://mapbiomas.org/en. São Paulo, Brazil.
- Pendrill, Florence, et al. 2019. "Agricultural and forestry trade drives large share of tropical deforestation emissions." *Global Environmental Change* 56:1–10. ISSN: 0959-3780. https://doi.org/10.1016/j.gloenvcha.2019.03.002.
- Pendrill, Florence, et al. 2022. "Disentangling the numbers behind agriculture-driven tropical deforestation." *Science* 377, no. 6611 (September). ISSN: 0036-8075. https://doi.org/10.1126/science.abm9267.

References IV

- Rajão, Raoni, et al. 2020. "The rotten apples of Brazil's agribusiness." *Science* 369 (6501): 246–248. https://doi.org/10.1126/science.aba6646.
- Reydon, Bastiaan Philip, et al. 2020. "Land governance as a precondition for decreasing deforestation in the Brazilian Amazon." *Land Use Policy* 94 (May): 104313. ISSN: 0264-8377. https://doi.org/10.1016/j.landusepol.2019.104313.
- Souza-Rodrigues, Eduardo A. 2019. "Deforestation in the Amazon: a unified framework for estimation and policy analysis." *Review of Economic Studies*, https://doi.org/10.1093/restud/rdy070.
- UN Comtrade. 2024. *United Nations Comtrade Database*. Retrieved on May 5th 2024 from: https://comtradeplus.un.org/. New York, US.
- UNEP-WCMC and IUCN. 2024. Protected Planet: The World Database on Protected Areas (WDPA). Available at: www.protectedplanet.net. Cambridge, UK.
- Vale, Ricardo, et al. 2022. "Regional expansion of the beef industry in Brazil: from the coast to the Amazon, 1966–2017." Regional Studies, Regional Science 9, no. 1 (December): 641–664. https://doi.org/10.1080/21681376.2022.2130088.
- Villén-Pérez, Sara, et al. 2022. "Mining threatens isolated indigenous peoples in the Brazilian Amazon." *Global Environmental Change* 72:102398. ISSN: 0959-3780. https://doi.org/10.1016/j.gloenvcha.2021.102398.

We construct our Bartik (or shift-share) instrument $B_{i,t}$ using:

- Distance to slaughterhouse locations, interacted with municipality i's proportion on overall pasture area/cattle head as **share** variable $z_{i,t=0}$.
 - Pasture expansion is clustered around relevant infrastructure
 - Transport costs are crucial factor for the profitability of agriculture (Souza-Rodrigues 2019), and slaughterhouses are an intermediate destination (Vale et al. 2022)

$$z_{i,t=0} = \exp\{-d_{i,t=0}\} \times \frac{1}{C_{t=0}} \sum_{k} c_{k,t=0},$$

- Changes in foreign (Chinese) beef consumption as **exogenous shift** variable g_t .
 - The demand is *relevant to* and partly satisfied with Brazilian beef,⁶
 - but is unlikely to affect Amazon deforestation in other ways.

$$g_t = \Delta \text{steak}_t^{CHN}$$
.

6. UN Comtrade 2024; FAO 2024.

We construct also an instrument based on export-weighted shocks:

 \blacksquare Beef consumption changes in m export destinations:

$$\begin{split} B_{i,t} &= \sum_{m} z_{i,m,t=0} \, g_{m,t-1} \\ z_{i,m,t=0} &= z_{i,t=0} \times \frac{\mathsf{exports}_{i,m,t=0}}{\mathsf{exports}_{i,t=0}} \,, \end{split}$$

- lacksquare where the share $z_{i,t=0}$ from before is interacted with export shares of destinations m.
- Export shares at the municipality level are taken from Ermgassen et al. 2020, only available for period 2010–2020.
- Growth in beef consumption of market m as **shift** variable $g_{m,t}$.

Results, pasture expansion Return

	2003	-2022	:	2011-2022		
$\Delta Forest \sim$	OLS	IV-CHN	OLS	IV-CHN	IV-EXP	
ΔPasture	-0.894	-0.973	-0.832	-0.976	-0.926	
	(0.03)	(0.03)	(0.04)	(0.03)	(0.04)	
Covariates	Full	•••				
Year FEs	Yes	•••				
$N \times T$	16,160	16,160	9,696			
F stat (Pasture)		732.9		711.7	86.2	

Results, soy (preliminary)

	$\Delta Forest \sim$		Δ Savanna \sim	$\Delta Pasture \sim$
	OLS	IV		
ΔSoy (ha)	- 0.293 (0.06)	-0.312 (0.07)		
Δ Soy (ton)	- 0.033 (0.01)	-0.066 (0.02)		
Covariates Year FEs	Full Yes	•••		
$N \times T$ F stat (Soy, ha) F stat (Soy, ton)	16,160	 333.2 215.9		

Results, soy (preliminary)

	ΔFor	Δ Forest \sim		anna~	$\Delta Pasture \sim$
	OLS	IV	OLS	IV	
ΔSoy (ha)	- 0.293 (0.06)	-0.312 (0.07)	-0.069 (0.02)	-0.295 (0.08)	
Δ Soy (ton)	- 0.033 (0.01)	-0.066 (0.02)	-0.005 (0.01)	-0.060 (0.02)	
Covariates Year FEs	Full Yes				
$N \times T$ F stat (Soy, ha) F stat (Soy, ton)	16,160	 333.2 215.9		333.2 215.9	

Results, soy (preliminary)

	ΔFor	$\Delta Forest \sim$		Δ Savanna \sim		$\Delta Pasture \sim$	
	OLS	IV	OLS	IV	OLS	IV	
ΔSoy (ha)	-0.293 (0.06)	-0.312 (0.07)	-0.069 (0.02)	-0.295 (0.08)	-0.202 (0.04)	-0.483 (0.10)	
Δ Soy (ton)	- 0.033 (0.01)	-0.066 (0.02)	- 0.005 (0.01)	-0.060 (0.02)	-0.021 (0.01)	-0.097 (0.03)	
Covariates Year FEs	Full Yes						
$N \times T$ F stat (Soy, ha) F stat (Soy, ton)	16,160	 333.2 215.9		333.2 215.9		333.2 215.9	