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Motivation

I Amazon deforestation continues to be an issue, threatening
I local biodiversity and livelihoods (Gibson et al. 2011; Villén-Pérez et al. 2022)
I regional and global climates (Leite-Filho et al. 2021; Araujo et al. 2023)

I In Brazil, demand for land primarily stems from agriculture,

I with cattle and soy being the predominant factors (Rajão et al. 2020)
I mining and other agricultural products play a limited role (Garrett et al. 2021)

I But no framework for causal interpretation of its deforestation impacts,

I footprint analyses lack causal interpretability
I naive regressions indicate limited impacts

This paper
Uses a quasi-experimental shift-share design to causally identify and quantify the
deforestation impacts of the demand-driven cattle expansion in the Legal Amazon
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Legal Amazon in 2000

Chart: Land cover, including forest, pasture, and croplands, in the Legal Amazon in 2000.
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Legal Amazon in 2022

Chart: Land cover, including forest, pasture, and croplands, in the Legal Amazon in 2022.
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Background, Deforestation in Brazil
Reasons for high levels and resurgence include:

I strong and rising demand for agricultural
products, especially beef productsa

I can be met with intensification, or
deforestation at the extensive margin.

I weak land governance enabling speculative
land appropriationb

I forest is cut, agricultural activities are
feigned, and ownership is claimed.

I policy interventions being not resilient with
respect to political influencec

a. Cusack et al. 2021; Pendrill et al. 2022.
b. Reydon, Fernandes, and Telles 2020.
c. Garrett et al. 2021; Kuschnig et al. 2023; Burgess,

Costa, and Olken 2024.
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Chart: Deforestation in the Brazilian Amazon
(in 1,000 km2).
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Background, Cattle & Beef in Brazil

The cattle and beef industry in Brazil...

I ...is important for the national economy at 8̃% of GDP (CEPEA 2023), and the
livelihoods of local farmers specifically (Ermgassen et al. 2020),

I ...is moving deeper into the Amazon (Vale et al. 2022) and is the proximate
cause of ∼90-95% of deforestation there (Haddad et al. 2024),

I ...is linked to deforestation that accounts for a fifth of global land use
emissions from the tropics, ∼500MT per year (Pendrill et al. 2019),

I ...and, due to the mobility of cattle, acts as the main intermediary for land
appropriations in the Amazon (Fearnside 2017).
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Empirical Specification
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Empirical Specification I

We depart from a simple (first-difference) panel regression specification:

∆yi,t = β∆ci,t +∆X ′
i,t−sγ + µt + ui,t ,

where
I ∆yi,t denotes forest loss in municipality i at time t,
I ∆ci,t is a measure of cattle expansion (e.g. change in cattle head),

I Xi,t−s holds (suitably lagged) control variables,
I µt are time-fixed effects, and
I ui,t ∼ N (0, σ2

y ) is the error term.

Entangled effects
However, β is not identified, i.a. as ci,t captures multiple drivers of the cattle expansion
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Empirical Specification II
To identify the causal effect of cattle expansion, we use a shift-share instrument:1

∆yi,t = β∆ĉi,t +∆X ′
i,t−sγ + µt + ui,t

∆ci,t = ∆Xi,t−sα+ ωBi,t + µb
t + εi,t

I We instrument the measure of cattle expansion ci,t with

Bi,t =
∑
m

exportsi,m,t=0
exportsi,t=0

zi,m,t=0 gm,t ,

I constructed as interaction of shares zi,t=0 with shifts gm,t for export market m

Identification
We rely on exogeneity of the shifts for identification, and exploit shares for relevance

1. Or ‘Bartik’; see Borusyak, Hull, and Jaravel 2022, for more details.
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Construction of the instrument Details

We construct our shift-share (or Bartik) instrument Bi,t as

Bi,t =
∑
m

exportsi,m,t=0
exportsi,t=0

zi,t=0 gm,t

I Distance to slaughterhouse locations, interacted with municipality i ’s initial cattle
stocks as share zi,t=0 to measure exposure to beef industry
I Transport costs are crucial factor for the profitability of agriculture (Souza-Rodrigues

2019), and slaughterhouses are an intermediate destination (Vale et al. 2022)

I Changes in international beef consumption as shifts gm,t , where we consider
(i) changes in all export destinations weighted by exports at the municipality level
(ii) changes in Chinese beef consumption for periods lacking export information
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Shift-Share Instrument Components

Chart: Slaughterhouse locations in 2000 and changes in aggregate beef consumption.
Sources: Vale et al. 2022; FAO 2023
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Data & Sources

Main sample covers 808 municipalities in the Legal Amazon from 2003 until 2022:
I Land cover and land use change statistics (MapBiomas 2023)
I Socioeconomic and agricultural data (IBGE 2022)
I Environmental fines (IBAMA 2022)
I Protected areas (UNEP-WCMC and IUCN 2022)
I Meteorological indicators (Beguería, Vicente-Serrano, and Angulo-Martínez 2010)
I Slaughterhouse locations (Vale et al. 2022)
I Municipality-level beef exports (Ermgassen et al. 2020)
I International beef consumption (FAO 2023)
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Results
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Results, cattle expansion

2003–2022 2011–2022

∆Forest∼ OLS

IV-CHN

OLS

IV-CHN IV-EXP

∆Cattle -0.103

-0.429

-0.109

-0.456 -0.381

(0.03)

(0.14)

(0.03)

(0.13) (0.10)

Covariates Full

. . .

Year FEs Yes

. . .

N × T 16,160

16,160

9,696

. . .

F stat (Cattle)

301.6 414.1 56.8

Standard errors clustered at the municipality-level. Significant (p < 0.01) estimates in bold.

Pasture expansion
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Results, biome heterogeneity

Biome Amazon Cerrado

∆Forest∼ ∆Forest∼ incl. Savanna∼

OLS IV

OLS IV OLS IV

Cattle -0.108 -0.530

-0.003 -0.014 -0.028 -0.342

(0.03) (0.15)

(.002) (0.02) (.001) (0.16)

Covariates Full . . .
Year FEs Yes . . .

N × T 10,060 . . .

21,240 . . .

F stat 188.7

53.3 53.3

Standard errors clustered at the municipality-level. Significant (p < 0.01) estimates in bold.

Heterogeneity by governments
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Results, intensification

All biomes Legal Amazon Amazon biome

∆Forest∼ OLS IV

OLS IV OLS IV

∆Cattle per pasture 0.054 0.276

0.104 0.503 0.108 0.530

(0.02) (0.10)

(0.03) (0.18) (0.03) (0.29)

Covariates Full . . .
Year FEs Yes . . .

N × T 31,480 . . .

16,160 . . . 10,060 . . .

F stat 782.6

397.3 245.7

Standard errors clustered at the municipality-level. Significant (p < 0.01) estimates in bold.
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Results, soy (preliminary)

∆Forest∼ ∆Savanna∼ ∆Pasture∼

OLS IV

OLS IV OLS IV

∆Soy (ha) -0.291 -0.311

-0.066 -0.295 -0.198 -0.493

(0.06) (0.07)

(0.02) (0.08) (0.05) (0.10)

∆Soy (ton) -0.033 -0.064

-0.005 -0.060 -0.020 -0.098

(0.01) (0.02)

(0.01) (0.02) (0.01) (0.03)

Covariates Full . . .
Year FEs Yes . . .

N × T 16,160 . . .
F stat (Soy, ha) 252.2

252.2 252.2

F stat (Soy, ton) 169.9

169.9 169.9

Standard errors clustered at the municipality-level. Significant (p < 0.01) estimates in bold.

17 / 33



Results, soy (preliminary)

∆Forest∼ ∆Savanna∼ ∆Pasture∼

OLS IV OLS IV

OLS IV

∆Soy (ha) -0.291 -0.311 -0.066 -0.295

-0.198 -0.493

(0.06) (0.07) (0.02) (0.08)

(0.05) (0.10)

∆Soy (ton) -0.033 -0.064 -0.005 -0.060

-0.020 -0.098

(0.01) (0.02) (0.01) (0.02)

(0.01) (0.03)

Covariates Full . . .
Year FEs Yes . . .

N × T 16,160 . . .
F stat (Soy, ha) 252.2 252.2

252.2

F stat (Soy, ton) 169.9 169.9

169.9

Standard errors clustered at the municipality-level. Significant (p < 0.01) estimates in bold.

17 / 33



Results, soy (preliminary)

∆Forest∼ ∆Savanna∼ ∆Pasture∼

OLS IV OLS IV OLS IV

∆Soy (ha) -0.291 -0.311 -0.066 -0.295 -0.198 -0.493
(0.06) (0.07) (0.02) (0.08) (0.05) (0.10)

∆Soy (ton) -0.033 -0.064 -0.005 -0.060 -0.020 -0.098
(0.01) (0.02) (0.01) (0.02) (0.01) (0.03)

Covariates Full . . .
Year FEs Yes . . .

N × T 16,160 . . .
F stat (Soy, ha) 252.2 252.2 252.2
F stat (Soy, ton) 169.9 169.9 169.9

Standard errors clustered at the municipality-level. Significant (p < 0.01) estimates in bold.

17 / 33



Results, robustness

We assess the sensitivity of results along several dimensions:

I Varying share definitions
I Different computations of distance to slaughterhouses
I Omitting slaughterhouse location information
I Updating shares over time

I Sample variations
I All municipalities in Amazon, Cerrado, and Pantanal
I Only municipalities with deforestation and 10% initial tree cover

I Specification variations
I Including municipality FEs / time trends
I Excluding year FEs
I Lag structure of treatment/instrument/controls

18 / 33



Conclusion
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Discussion, effect size

I Stocking rates suggest that each cow requires ∼0.8 hectare of grazing area2

I Reported forest-to-pasture transition rate of ∼0.66 hectare per cattle3

I Naive estimates suggest almost decoupling of cattle and land
I Our instrumented estimates are closer to those suggested by footprint analyses

I but still amount to only 63–75% of them
I large share of observed deforestation unexplained

Pasture area per cattle head

2004 2006 2008 2010 2012 2014 2016 2018 2020 2022

0.5

1

2. Arantes et al. 2018.
3. MapBiomas 2023; IBGE 2022.
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0.5

1

2. Arantes et al. 2018.
3. MapBiomas 2023; IBGE 2022.
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Discussion, implications

I The beef industry is considered a driver of economic growth
I Monitoring supply chains complicated (Alix-Garcia and Gibbs 2017),
I but recent initiatives (EUDR) could be role model for other markets

I Land use externalities lie at the heart of climate change
I Beef has a caloric efficiency of 1.9%4 and much higher land use for production5

I Few interventions disincentivize the demand for LU-intensive food products
I Domestic tax restructuring more targeted6; Global GHG tax affects meat products7
I Marketing restrictions and information provision, e.g. “do pasto ao prato”

I Supply-side measures to decrease land pressures from given demand
I Targeted credit provision for intensification of existing pasture
I Other measures to incentivize restoration of pasture/forest (similar to REDD+?)

4. Alexander et al. 2016.
5. Poore and Nemecek 2018.
6. Haddad et al. 2024.
7. Godfray et al. 2018.
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Summary & Conclusion

I We causally identify and quantify the deforestation impacts of the
demand-driven cattle expansion in the Legal Amazon

I Our results suggest that ...
I ... the demand-driven expansion is a considerable causal driver of deforestation
I ... effects are underestimated without proper identification
I ... but explains only 63-75% of observed cattle-related deforestation
I ... intensification may alleviate land pressures, soy acts as indirect driver

For more information, download
the slides or contact me at
I lukas.vashold@wu.ac.at
I www.vashold.eu
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Construction of the instrument Return

We construct our Bartik (or shift-share) instrument Bi,t using:

I Distance to slaughterhouse locations, interacted with municipality i ’s proportion
on overall pasture area/cattle head as share variable zi,t=0.
I Pasture expansion is clustered around relevant infrastructure
I Transport costs are crucial factor for the profitability of agriculture (Souza-Rodrigues

2019), and slaughterhouses are an intermediate destination (Vale et al. 2022)

zi,t=0 = exp{−di,t=0} ×
1

Ct=0

∑
k

ck,t=0 ,

I Changes in foreign (Chinese) beef consumption as exogenous shift variable gt .
I The demand is relevant to and partly satisfied with Brazilian beef,8
I but is unlikely to affect Amazon deforestation in other ways.

gt = ∆steakCHN
t .

8. UN Comtrade 2022; FAO 2023.
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Construction of export-weighted instrument Return

We construct also an instrument based on export-weighted shocks:

I Beef consumption changes in m export destinations:

Bi,t =
∑
m

zi,m,t=0 gm,t−1

zi,m,t=0 = zi,t=0 ×
exportsi,m,t=0
exportsi,t=0

,

I where the share zi,t=0 from before is interacted with export shares of destinations m.
I Export shares at the municipality level are taken from Ermgassen et al. 2020, only

available for period 2010–2020.

I Growth in beef consumption of market m as shift variable gm,t .
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Results, pasture expansion Return

2003–2022 2011–2022

∆Forest∼ OLS IV-CHN OLS IV-CHN IV-EXP

∆Pasture -0.895 -0.971 -0.832 -0.971 -0.914
(0.03) (0.03) (0.04) (0.03) (0.03)

Covariates Full . . .
Year FEs Yes . . .

N × T 16,160 16,160 9,696 . . .
F stat (Pasture) 796.1 816.4 111.9

Standard errors clustered at the municipality-level. Significant (p < 0.01) estimates in bold.
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Results, government heterogeneity Return

Lula Rousseff Temer Bolsonaro

∆Forest∼ OLS IV OLS IV OLS IV OLS IV

∆Cattle -0.097 -0.479 -0.046 -0.121 -0.086 -0.575 -0.159 -0.517
(0.03) (0.08) (0.01) (0.06) (0.03) (0.15) (0.04) (0.13)

Covariates Full . . .
Year FEs Yes . . .

N × T 6,464 6,464 4,040 4,040 2,424 2,424 3,232 3,232
F stat 150.1 38.8 65.7 261.2

Standard errors clustered at the municipality-level. Significant (p < 0.01) estimates in bold.
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