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P Interventions as Breaks: interventions can appear as positive or
negative breaks at unknown times.

P Evaluation Focus: Traditional policy evaluations focus on the effects of
single, known policies, contributing to uncertainty.

P Policy Tool Combination: Policymakers use various policies (and mixes)
in pursuit of their goals, but effectiveness remains uncertain.

P Delayed Effect: The potential delay between intervention and its
effects requires flexibility, as these two often diverge.
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Introduction

P Problem: Macroeconomic as well as climate data are often weak-sense
non-stationary. Besides detecting breaks, one might be interested in:

1. the partial effects
2. the size of the break itself

P Regime switching models too restrictive in state transitions.

P Approach: Step Indicator Saturation (SIS) to detect breaks

True Stepsize Estimated Stepsize
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Introduction
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Introduction

P Frequentist framework developed in Castle et al. (2015)

P "General to specific” a.k.a. "Gets” as our performance benchmark
P Extended to panels in Pretis and Schwarz (2022)

P We propose a flexible Bayesian break detection model with

P strong detection quality in various settings,
P natural break-time uncertainty quantification,
P intuitively interpretable prior parameters,

P and an outlier-robust estimation strategy.

P We showcase our approach with

P asimulation, study benchmarking with "Gets”,

P areplication of break detection in transport emissions (Koch et al. 2022),
P an application to modeling mining transitions.
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Given observations (Y7 1,X; ;) ... (Yy 7, Xy 1), the model is

T-1

Yit = Xg,tﬁ + Z ”{jét}‘si,t%,t T Eip ™~ T (1)
=3

or in matrix notation

y=XB+ZAy +e¢, €~ Te{NT}

where X € RNT*P contains e.g. fixed effects or external regressors.
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Construction of Z

0 - O]
. 0 (1) 0
Z = with z = :
0 Z 0
1 ... 1

NTxN(T—3) 1 - 1]
Tx(T—3)

P Zis block diagonal with N blocks each being a binary matrix z
collecting step-shifts, which is T' x (T — 3).
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Model Selection Problem

Given observations (Y; 1,X; ;) ... (Yy 7, Xy 1), the model is

y=XB+ZAy+e, e~mynTy

where Z is constructed as outlined before and
» A = diag(§?) is a selection matrix,
» 57 € {0, 1}V T3 are the selection indicators,
P ~ € RN(T-3) are the coefficients of included breaks.

The name of the game is find each ¢, ;, for which E(¢, ,|y) > P
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A Normal Mixture for ¢

P Need for outlier correction to prevent bias in the step-estimation

True Stepsize Estimated Stepsize

P Gets uses indicator saturation to "dummy out” the outlier.

P We use a Normal mixture, both centered around zero, with an
additional scaling parameter K in a data augmentation step:

N(g;4:0,0%) if 6°=0
N(g; ;0,0°K) if 6 =

i,t)

Eip ™~ T = for K > 1
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Priors

We implement the model in a 4-step Gibbs sampler procedure:

1. Assume errors come from Gaussian mixture: £ = (1 —6°) £ + 6° £/K /2 and use them
in data augmentation step before further estimation.
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QN —1 -
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) }Error variance
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02~ Gt ( LI )}Error variance

100’ 100
B~ N, (0,0%AI,)}Covariate coefficients

1 ~ Beta(cy, dy)

Outlier correction?
0¢|n ~ Bern(n)

07 ¢|lw; ~ Bern(w;

i (0.) Z)}Breakdetection
VST ~ p(v,

1. Assume errors come from Gaussian mixture: £ = (1 —6°) £ + 6° £/K /2 and use them
in data augmentation step before further estimation.
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Priors

v 167, ~p(d.,)

P Dispersion parameter 0., is key due to information paradox.

P We use non-local priors (NLPs) proposed for model selection and
Bayesian testing in Johnson and Rossell (2010, 2012).

P A priori parameter independence across time and observations.

P In particular, the Inverse Moment Prior (iMom) is convenient as it allows
for model consistency for p = O(T)
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Non Local Priors

» iIMOM prior density for some k, v, 7 > 0 takes the form:

,7_1//2 ot B o —k
Wi(’Y"yOak?V?T):%((7_7&2) | 1)/zexp{— (—(7 %)) }

T

P Standard-parameterization:
» =0
> k=1
P v =1 (Cauchy tails)

P 7 controls the a-priori probability of breaks with a given size.
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Non Local Priors: 7 calibration

1.5-
— iIMOM (r=0.077)
— iIMOM (r=0.133)
1.0~ 0
-03 -02 -0.1 01 02 03
‘ L g
-2 -1 =02 0 0.2 1 2
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Break Uncertainty

P Probabilistic setup allows for a measure of break uncertainty
» Naturally nested in the model using MCMC draws of 4, ,

PIP
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0.6

0.4
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0.07

PI

1.0
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0.07

_ - Individual PIP
—==- Joint PIP (t=3)

» Combination of individual breaks via P(6; , = 1V ¢, ,,;, = 1) possible
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Simulation Study

We use simulated data to compare our approach to “Gets”
» N=10
» T=30
» Break size = {1, 1.5, 2, 3, 6, 10} x SD of ¢, ,
P Two settings:

1. Sparse: 4 units with 1 break
2. Dense: 8 units, 4 of which have 2 breaks

P # of repetitions = 100
P a-level of Gets set to 0.05, 7 ~ 2 s.t. P(|y] < SD(e)|r) = 0.05
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Simulation Study
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Detecting Breaks in Emission Data

For comparison, we replicate Koch et al. (2022) that search for breaks in
transport emissions data and assign them to climate policies (or mixes).

P Dependent variable: (log) transport emissions
» Controls: (log) GDP,GDP?, POP + two-way FEs
P Region: EU15 countries

P Time-span: 1995-2018 (yearly)

log(COy) = FEa + log(GDP) B, + log(GDP?)By + log(POP) 35 + ZAvy + €

» Weset T~ 2s.t. P(|y| < SD(e)|r) =0.05
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Replication: Results 1/3

Transport Emissions Breaks
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Replication: Results 2/3

Transport Emissions Breaks

Panel A: PIP estimates
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Replication: Results 3/3

Transport Emissions Breaks

Panel A: PIP estimates
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Application: Mining Segmentation

P As an environmental application, we look at Toka Tindung mine in
Indonesia and aim to track its expansion over time

P Use peak Enhanced Vegetation Index (EVI) index for 90 x 90m pixels
within pre-defined polygon (Sepin, Vashold, and Kuschnig 2025)

P Satellite data from LANDSATS for N ~ 2000 and T' = 22
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P As an environmental application, we look at Toka Tindung mine in
Indonesia and aim to track its expansion over time

P Use peak Enhanced Vegetation Index (EVI) index for 90 x 90m pixels
within pre-defined polygon (Sepin, Vashold, and Kuschnig 2025)

P Satellite data from LANDSATS for N ~ 2000 and T' = 22

P Utilizes different parts of model:
P FE estimates for determination of always/never-treated units
P Breaks for transitions from forest to mine
P Outlier detection to mitigate double-counting and cloud artifacts
P Windows for break-time uncertainty and more laissez-faire detection
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Application: Mining Segmentation

EVI Toka Tindung
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7 — P 5
- - - Detected Breaks i
08 - Positive Break Int. |
®  Negative Break Int. 1
X Gets Detections |
06
a
o
0.4
0.2 | /\-’\/\'\/\/ W
00 -
556 570 1165 1888 1919 2949
Panel B: Fitted values of y
107 : e  Observed
. —— BISAM-fit
0.8 50 So _'. .
s a
2 06 -
o 0
o
o .
7]
& 04 . .
02 -

1888 1919 2949

Lukas Vashold (W The Saturated Bayesian niversity of Melbourne




Application: Mining Segmentation

Figure: Toka Tindung in H1 2015
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Application: Mining Segmentation

Figure: Toka Tindung in H2 2017
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Application: Mining Segmentation

w

Figure: Toka Tindung in H2 2019
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Application: Mining Segmentation

llllllll

Figure: Toka Tindung in H2 2020
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Application: Mining Segmentation

Figure: Toka Tindung in H2 2021
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Application: Mining Segmentation

Figure: Toka Tindung in H1 2023
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Application: Mining Segmentation

Figure: Toka Tindung in H2 2024
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Summary & Caveats

PRO:
A very flexible break detection model with:

P Interpretable prior parameters
P Competitive detection quality
P Break uncertainty quantification
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Summary & Caveats

PRO:
A very flexible break detection model with:

P Interpretable prior parameters
P Competitive detection quality
P Break uncertainty quantification

CONS:
P The model scales well with N but less with T
P Computational complexity is considerable (but manageable)

» The iMom prior is not conjugate

P Solution in sight: There exists a normal-mixture that approximates the
iMom arbitrarily well (work in progress).
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