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Introduction

▶ Macro and/or Environmental Data: Often large 𝑁 and small 𝑇

▶ Interventions as Breaks: interventions can appear as positive or
negative breaks at unknown times.

▶ Evaluation Focus: Traditional policy evaluations focus on the effects of
single, known policies, contributing to uncertainty.

▶ Policy Tool Combination: Policymakers use various policies (and mixes)
in pursuit of their goals, but effectiveness remains uncertain.

▶ Delayed Effect: The potential delay between intervention and its
effects requires flexibility, as these two often diverge.
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Introduction

▶ Problem: Macroeconomic as well as climate data are often weak‐sense
non‐stationary. Besides detecting breaks, one might be interested in:
1. the partial effects
2. the size of the break itself

▶ Regime switching models too restrictive in state transitions.

▶ Approach: Step Indicator Saturation (SIS) to detect breaks
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Introduction

▶ Frequentist framework developed in Castle et al. (2015)
▶ ”General to specific” a.k.a. ”Gets” as our performance benchmark
▶ Extended to panels in Pretis and Schwarz (2022)

▶ We propose a flexible Bayesian break detection model with
▶ strong detection quality in various settings,
▶ natural break‐time uncertainty quantification,
▶ intuitively interpretable prior parameters,
▶ and an outlier‐robust estimation strategy.

▶ We showcase our approach with
▶ a simulation, study benchmarking with ”Gets”,
▶ a replication of break detection in transport emissions (Koch et al. 2022),
▶ an application to modeling mining transitions.
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Setup

Given observations (𝑌1,1,X1,1) … (𝑌𝑁,𝑇 ,X𝑁,𝑇 ), the model is

𝑦𝑖,𝑡 = x′
𝑖,𝑡𝛽 +

𝑇 −1
∑
𝑗=3

𝕀{𝑗≤𝑡}𝛿𝑖,𝑡𝛾𝑖,𝑡 + 𝜀𝑖,𝑡, 𝜀𝑖,𝑡 ∼ 𝜋𝜀 (1)

or in matrix notation

𝑦 = X𝛽 + ZΔ𝛾 + 𝜀, 𝜀 ∼ 𝜋𝜀{𝑁𝑇 }

where X ∈ ℝ𝑁𝑇 ×𝑝 contains e.g. fixed effects or external regressors.
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Construction of Z

Z = ⎡⎢
⎣

z 0
⋱

0 z
⎤⎥
⎦⏟⏟⏟⏟⏟

𝑁𝑇 ×𝑁(𝑇 −3)

with z =

⎡
⎢
⎢
⎢
⎢
⎣

0 ⋯ 0
0 ⋯ 0
1 ⋱ ⋮
⋮ ⋱ 0
1 ⋯ 1
1 ⋯ 1

⎤
⎥
⎥
⎥
⎥
⎦⏟⏟⏟⏟⏟

𝑇 ×(𝑇 −3)

▶ Z is block diagonal with N blocks each being a binary matrix z
collecting step‐shifts, which is 𝑇 × (𝑇 − 3).
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Model Selection Problem

Given observations (𝑌1,1,X1,1) … (𝑌𝑁,𝑇 ,X𝑁,𝑇 ), the model is

𝑦 = X𝛽 + ZΔ𝛾 + 𝜀, 𝜀 ∼ 𝜋𝜀{𝑁𝑇 }

where Z is constructed as outlined before and
▶ Δ = 𝑑𝑖𝑎𝑔(𝛿𝛾) is a selection matrix,
▶ 𝛿𝛾 ∈ {0, 1}𝑁(𝑇 −3) are the selection indicators,
▶ 𝛾 ∈ ℝ𝑁(𝑇 −3) are the coefficients of included breaks.

The name of the game is find each 𝛿𝑖,𝑡 for which 𝔼(𝛿𝑖,𝑡|𝑦) > 𝑃
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A Normal Mixture for 𝜀
▶ Need for outlier correction to prevent bias in the step‐estimation
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▶ Gets uses indicator saturation to ”dummy out” the outlier.
▶ We use a Normal mixture, both centered around zero, with an

additional scaling parameter 𝐾 in a data augmentation step:

𝜀𝑖,𝑡 ∼ 𝜋𝜀 = {𝒩(𝜀𝑖,𝑡; 0, 𝜎2) if 𝛿𝜀 = 0
𝒩(𝜀𝑖,𝑡; 0, 𝜎2𝐾) if 𝛿𝜀 = 1 for 𝐾 ≫ 1
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Priors
We implement the model in a 4‐step Gibbs sampler procedure:

𝜎2
𝑖 ∼ 𝒢−1 ( 1

100, 1
100)}Error variance

𝛽 ∼ 𝒩𝑝 (0, 𝜎2𝜆𝐼𝑝)}Covariate coefficients

𝜂 ∼ 𝐵𝑒𝑡𝑎(𝑐0, 𝑑0)
𝛿𝜀|𝜂 ∼ 𝐵𝑒𝑟𝑛(𝜂) }Outlier correction1

𝛿𝛾
𝑖,𝑡|𝜔𝑖 ∼ 𝐵𝑒𝑟𝑛(𝜔𝑖)

𝛾|𝛿𝛾 ∼ 𝑝(𝜗𝛾) }Break detection

1. Assume errors come from Gaussian mixture: ̃𝜀 = (1 − 𝛿𝜀) ̂𝜀 + 𝛿𝜀 ̂𝜀/𝐾1/2 and use them
in data augmentation step before further estimation.
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Priors

𝛾 ∣ 𝛿𝛾, ⋅ ∼ 𝑝(𝜗𝛾)

▶ Dispersion parameter 𝜗𝛾 is key due to information paradox.

▶ We use non‐local priors (NLPs) proposed for model selection and
Bayesian testing in Johnson and Rossell (2010, 2012).

▶ A priori parameter independence across time and observations.

▶ In particular, the Inverse Moment Prior (iMom) is convenient as it allows
for model consistency for 𝑝 = 𝒪(𝑇 )
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Non Local Priors

▶ iMOM prior density for some 𝑘, 𝜈, 𝜏 > 0 takes the form:

𝜋𝑖(𝛾|𝛾0, 𝑘, 𝜈, 𝜏) = 𝑘𝜏𝜈/2

Γ(𝜈/2𝑘) ((𝛾 − 𝛾0)2)−(𝜈+1)/2 exp{− ((𝛾 − 𝛾0)2

𝜏 )
−𝑘

}

▶ Standard‐parameterization:
▶ 𝛾0 = 0
▶ 𝑘 = 1
▶ 𝜈 = 1 (Cauchy tails)

▶ 𝜏 controls the a‐priori probability of breaks with a given size.
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Non Local Priors: 𝜏 calibration

iMOM (τ=0.077)

iMOM (τ=0.133)
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Break Uncertainty

▶ Probabilistic setup allows for a measure of break uncertainty
▶ Naturally nested in the model using MCMC draws of 𝛿𝑖,𝑡
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▶ Combination of individual breaks via 𝑃(𝛿𝑖,𝑡 = 1 ∨ 𝛿𝑖,𝑡+𝑙 = 1) possible
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Simulation Study

We use simulated data to compare our approach to “Gets”
▶ N = 10
▶ T = 30
▶ Break size = {1, 1.5, 2, 3, 6, 10} × SD of 𝜀𝑖,𝑡
▶ Two settings:

1. Sparse: 4 units with 1 break
2. Dense: 8 units, 4 of which have 2 breaks

▶ # of repetitions = 100
▶ 𝛼‐level of Gets set to 0.05, 𝜏 ≈ 2 s.t. 𝑃(|𝛾| ≤ 𝑆𝐷(𝜀)|𝜏) = 0.05
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Simulation Study
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Simulation Study
Precision and Recall
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Simulation Study
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Simulation Study
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Detecting Breaks in Emission Data

For comparison, we replicate Koch et al. (2022) that search for breaks in
transport emissions data and assign them to climate policies (or mixes).

▶ Dependent variable: (log) transport emissions

▶ Controls: (log) 𝐺𝐷𝑃, 𝐺𝐷𝑃 2, 𝑃𝑂𝑃 + two‐way FEs

▶ Region: EU15 countries

▶ Time‐span: 1995‐2018 (yearly)

𝑙𝑜𝑔(𝐶𝑂2) = 𝐹𝐸𝛼 + 𝑙𝑜𝑔(𝐺𝐷𝑃 )𝛽1 + 𝑙𝑜𝑔(𝐺𝐷𝑃 2)𝛽2 + 𝑙𝑜𝑔(𝑃𝑂𝑃)𝛽3 + ZΔ𝛾 + 𝜀

▶ We set 𝜏 ≈ 2 s.t. 𝑃(|𝛾| ≤ 𝑆𝐷(𝜀)|𝜏) = 0.05
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Replication: Results 1/3
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Replication: Results 2/3
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Replication: Results 3/3
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Application: Mining Segmentation

▶ As an environmental application, we look at Toka Tindung mine in
Indonesia and aim to track its expansion over time

▶ Use peak Enhanced Vegetation Index (EVI) index for 90 × 90m pixels
within pre‐defined polygon (Sepin, Vashold, and Kuschnig 2025)

▶ Satellite data from LANDSAT8 for 𝑁 ≈ 2000 and 𝑇 = 22

▶ Utilizes different parts of model:
▶ FE estimates for determination of always/never‐treated units
▶ Breaks for transitions from forest to mine
▶ Outlier detection to mitigate double‐counting and cloud artifacts
▶ Windows for break‐time uncertainty and more laissez‐faire detection
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Application: Mining Segmentation
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Application: Mining Segmentation

Figure: Toka Tindung in H1 2015
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Application: Mining Segmentation

Figure: Toka Tindung in H2 2017
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Application: Mining Segmentation

Figure: Toka Tindung in H2 2019
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Application: Mining Segmentation

Figure: Toka Tindung in H2 2020
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Application: Mining Segmentation

Figure: Toka Tindung in H2 2021
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Application: Mining Segmentation

Figure: Toka Tindung in H1 2023
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Application: Mining Segmentation

Figure: Toka Tindung in H2 2024
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Summary & Caveats

PRO:
A very flexible break detection model with:

▶ Interpretable prior parameters
▶ Competitive detection quality
▶ Break uncertainty quantification

CONS:
▶ The model scales well with 𝑁 but less with 𝑇
▶ Computational complexity is considerable (but manageable)
▶ The iMom prior is not conjugate

▶ Solution in sight: There exists a normal‐mixture that approximates the
iMom arbitrarily well (work in progress).
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